Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita Rezzani is active.

Publication


Featured researches published by Rita Rezzani.


Histology and Histopathology | 2008

Atherosclerosis and oxidative stress

Bonomini F; Tengattini S; Fabiano A; Bianchi R; Rita Rezzani

This review focuses on the morphological features of atherosclerosis and the involvement of oxidative stress in the initiation and progression of this disease. There is now consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein in the vascular wall. Reactive oxygen species (ROS) are key mediators of signaling pathways that underlie vascular inflammation in atherogenesis, starting from the initiation of fatty streak development, through lesion progression, to ultimate plaque rupture. Plaque rupture and thrombosis result in the acute clinical complications of myocardial infarction and stroke. Many data support the notion that ROS released from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, myeloperoxidase (MPO), xanthine oxidase (XO), lipoxygenase (LO), nitric oxide synthase (NOS) and enhanced ROS production from dysfunctional mitochondrial respiratory chain, indeed, have a causatory role in atherosclerosis and other vascular diseases. Moreover, oxidative modifications in the arterial wall can contribute to the arteriosclerosis when the balance between oxidants and antioxidants shifts in favour of the former. Therefore, it is important to consider sources of oxidants in the context of available antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase and transferases thiol-disulfide oxidoreductases and peroxiredoxins. Here, we review also the mechanisms in which they are involved in order to accelerate the pace of the discovery and facilitate development of novel therapeutic approaches.


Journal of Pineal Research | 2007

CARDIOVASCULAR DISEASES: PROTECTIVE EFFECTS OF MELATONIN

Sandra Tengattini; Russel J. Reiter; Dun Xian Tan; M. Pilar Terron; Luigi F. Rodella; Rita Rezzani

Abstract:  This brief review considers some of the cardiac diseases and conditions where free radicals and related reactants are believed to be causative. The report also describes the beneficial actions of melatonin against oxidative cardiovascular disorders. Based on the data available, melatonin seems to have cardioprotective properties via its direct free radical scavenger and its indirect antioxidant activity. Melatonin efficiently interacts with various reactive oxygen and reactive nitrogen species (receptor independent actions) and it also upregulates antioxidant enzymes and downregulates pro‐oxidant enzymes (receptor‐dependent actions). Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiologic barriers. These findings have implications for the protective effects of melatonin against cardiac diseases induced by oxidative stress. Melatonin attenuates molecular and cellular damages resulting from cardiac ischemia/reperfusion in which destructive free radicals are involved. Anti‐inflammatory and antioxidative properties of melatonin are also involved in the protection against a chronic vascular disease, atherosclerosis. The administration of melatonin, as a result of its antioxidant features, has been reported to reduce hypertension and cardiotoxicity induced by clinically used drugs. The results described herein help to clarify the beneficial effects of melatonin against these conditions and define the potential clinical applicability of melatonin in cardiovascular diseases.


Diabetes | 2008

Treatment of Obese Diabetic Mice With a Heme Oxygenase Inducer Reduces Visceral and Subcutaneous Adiposity, Increases Adiponectin Levels, and Improves Insulin Sensitivity and Glucose Tolerance

Ming Li; Dong Hyun Kim; Peter L. Tsenovoy; Stephen J. Peterson; Rita Rezzani; Luigi F. Rodella; Wilbert S. Aronow; Susumu Ikehara; Nader G. Abraham

OBJECTIVE—We hypothesized that the induction of heme oxygenase (HO)-1 and increased HO activity, which induces arterial antioxidative enzymes and vasoprotection in a mouse and a rat model of diabetes, would ameliorate insulin resistance, obesity, and diabetes in the ob mouse model of type 2 diabetes. RESEARCH DESIGN AND METHODS—Lean and ob mice were intraperitoneally administered the HO-1 inducer cobalt protoporphyrin (3 mg/kg CoPP) with and without the HO inhibitor stannous mesoporphyrin (2 mg/100 g SnMP) once a week for 6 weeks. Body weight, blood glucose, and serum cytokines and adiponectin were measured. Aorta, adipose tissue, bone marrow, and mesenchymal stem cells (MSCs) were isolated and assessed for HO expression and adipogenesis. RESULTS—HO activity was reduced in ob mice compared with age-matched lean mice. Administration of CoPP caused a sustained increase in HO-1 protein, prevented weight gain, decreased visceral and subcutaneous fat content (P < 0.03 and 0.01, respectively, compared with vehicle animals), increased serum adiponectin, and decreased plasma tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-1β levels (P < 0.05). HO-1 induction improved insulin sensitivity and glucose tolerance and decreased insulin levels. Upregulation of HO-1 decreased adipogenesis in bone marrow in vivo and in cultured MSCs and increased adiponectin levels in the culture media. Inhibition of HO activity decreased adiponectin and increased secretion of TNF-α, IL-6, and IL-1β levels in ob mice. CONCLUSIONS—This study provides strong evidence for the existence of an HO-1–adiponectin regulatory axis that can be manipulated to ameliorate the deleterious effects of obesity and the metabolic syndrome associated with cardiovascular disease and diabetes.


Circulation | 2008

Role of Caveolar Compartmentation in Endothelium-Derived Hyperpolarizing Factor–Mediated Relaxation Ca2+ Signals and Gap Junction Function Are Regulated by Caveolin in Endothelial Cells

Julie Saliez; Caroline Bouzin; Géraldine Rath; Philippe Ghisdal; Fanny Desjardins; Rita Rezzani; Luigi F. Rodella; Joris Vriens; Bernd Nilius; Olivier Feron; Jean-Luc Balligand; Chantal Dessy

Background— In endothelial cells, caveolin-1, the structural protein of caveolae, acts as a scaffolding protein to cluster lipids and signaling molecules within caveolae and, in some instances, regulates the activity of proteins targeted to caveolae. Specifically, different putative mediators of the endothelium-derived hyperpolarizing factor (EDHF)–mediated relaxation are located in caveolae and/or regulated by the structural protein caveolin-1, such as potassium channels, calcium regulatory proteins, and connexin 43, a molecular component of gap junctions. Methods and Results— Comparing relaxation in vessels from caveolin-1 knockout mice and their wild-type littermates, we observed a complete absence of EDHF-mediated vasodilation in isolated mesenteric arteries from caveolin-1 knockout mice. The absence of caveolin-1 is associated with an impairment of calcium homeostasis in endothelial cells, notably, a decreased activity of Ca2+-permeable TRPV4 cation channels that participate in nitric oxide– and EDHF-mediated relaxation. Moreover, morphological characterization of caveolin-1 knockout and wild-type arteries showed fewer gap junctions in vessels from knockout animals associated with a lower expression of connexins 37, 40, and 43 and altered myoendothelial communication. Finally, we showed that TRPV4 channels and connexins colocalize with caveolin-1 in the caveolar compartment of the plasma membrane. Conclusions— We demonstrated that expression of caveolin-1 is required for EDHF-related relaxation by modulating membrane location and activity of TRPV4 channels and connexins, which are both implicated at different steps in the EDHF-signaling pathway.


Aging and Disease | 2015

Metabolic Syndrome, Aging and Involvement of Oxidative Stress

Francesca Bonomini; Luigi F. Rodella; Rita Rezzani

The prevalence of the metabolic syndrome, a cluster of cardiovascular risk factors associated with obesity and insulin resistance, is dramatically increasing in Western and developing countries. This disorder consists of a cluster of metabolic conditions, such as hypertriglyceridemia, hyper-low-density lipoproteins, hypo-high-density lipoproteins, insulin resistance, abnormal glucose tolerance and hypertension, that-in combination with genetic susceptibility and abdominal obesity-are risk factors for type 2 diabetes, vascular inflammation, atherosclerosis, and renal, liver and heart diseases. One of the defects in metabolic syndrome and its associated diseases is excess of reactive oxygen species. Reactive oxygen species generated by mitochondria, or from other sites within or outside the cell, cause damage to mitochondrial components and initiate degradative processes. Such toxic reactions contribute significantly to the aging process. In this article we review current understandings of oxidative stress in metabolic syndrome related disease and its possible contribution to accelerated senescence.


Hypertension | 2009

Heme Oxygenase-1 Induction Remodels Adipose Tissue and Improves Insulin Sensitivity in Obesity-Induced Diabetic Rats

Angelique Nicolai; Ming Li; Dong Hyun Kim; Stephen J. Peterson; Luca Vanella; Vincenzo Positano; Amalia Gastaldelli; Rita Rezzani; Luigi F. Rodella; George S. Drummond; Claudia Kusmic; Antonio L'Abbate; Attallah Kappas; Nader G. Abraham

Obesity-associated inflammation causes insulin resistance. Obese adipose tissue displays hypertrophied adipocytes and increased expression of the cannabinoid-1 receptor. Cobalt protoporphyrin (CoPP) increases heme oxygenase-1 (HO-1) activity, increasing adiponectin and reducing inflammatory cytokines. We hypothesize that CoPP administration to Zucker diabetic fat (ZDF) rats would improve insulin sensitivity and remodel adipose tissue. Twelve-week-old Zucker lean and ZDF rats were divided into 4 groups: Zucker lean, Zucker lean–CoPP, ZDF, and ZDF–CoPP. Control groups received vehicle and treatment groups received CoPP (2 mg/kg body weight) once weekly for 6 weeks. Serum insulin levels and glucose response to insulin injection were measured. At 18 weeks of age, rats were euthanized, and aorta, kidney, and subcutaneous and visceral adipose tissues were harvested. HO-1 expression was measured by Western blot analysis and HO-1 activity by serum carbon monoxide content. Adipocyte size and cannabinoid-1 expression were measured. Adipose tissue volumes were determined using MRI. CoPP significantly increased HO-1 activity, phosphorylated AKT and phosphorylated AMP kinase, and serum adiponectin in ZDF rats. HO-1 induction improved hyperinsulinemia and insulin sensitivity in ZDF rats. Subcutaneous and visceral adipose tissue volumes were significantly decreased in ZDF rats. Adipocyte size and cannabinoid-1 expression were both significantly reduced in ZDF–CoPP rats in subcutaneous and visceral adipose tissues. This study demonstrates that HO-1 induction improves insulin sensitivity, downregulates the peripheral endocannabinoid system, reduces adipose tissue volume, and causes adipose tissue remodeling in a model of obesity-induced insulin resistance. These findings suggest HO-1 as a potential therapeutic target for obesity and its associated health risks.


Hypertension | 2005

Effect of Treatment With Candesartan or Enalapril on Subcutaneous Small Artery Structure in Hypertensive Patients With Noninsulin-Dependent Diabetes Mellitus

Damiano Rizzoni; Enzo Porteri; Carolina De Ciuceis; Intissar Sleiman; Luigi F. Rodella; Rita Rezzani; Silvia Paiardi; Rossella Bianchi; Giuseppina Ruggeri; Gianluca E.M. Boari; Maria Lorenza Muiesan; Massimo Salvetti; F. Zani; Marco Miclini; Enrico Agabiti Rosei

Structural alterations of subcutaneous small resistance arteries are associated with a worse clinical prognosis in hypertension and noninsulin-dependent diabetes mellitus (NIDDM). However, no data are presently available about the effects of antihypertensive therapy on vascular structure in hypertensive patients with NIDDM. Therefore, we have investigated the effect of an angiotensin-converting enzyme inhibitor, enalapril, and a highly selective angiotensin receptor blocker, candesartan cilexetil, on indices of subcutaneous small resistance artery structure in 15 patients with mild hypertension and NIDDM. Eight patients were treated with candesartan (8 to 16 mg per day) and 7 with enalapril (10 to 20 mg per day) for 1 year. Each patient underwent a biopsy of the subcutaneous fat from the gluteal region at baseline and after 1 year of treatment. Small arteries were dissected and mounted on a micromyograph and the media-to-internal lumen ratio was evaluated; moreover, endothelium-dependent vasodilation to acetylcholine was assessed. A similar blood pressure-lowering effect and a similar reduction of the media-to-lumen ratio of small arteries was observed with the 2 drugs. Vascular collagen content was reduced and metalloproteinase-9 was increased by candesartan, but not by enalapril. Changes of circulating indices of collagen turnover and circulating matrix metalloproteinase paralleled those of vascular collagen. The 2 drugs equally improved endothelial function. In conclusion, antihypertensive treatment with drugs that inhibit the renin-angiotensin-aldosterone system activity is able to correct, at least in part, alterations in small resistance artery structure in hypertensive patients with NIDDM. Candesartan may be more effective than enalapril in reducing collagen content in the vasculature.


Journal of Pharmacology and Experimental Therapeutics | 2007

Long-Term Treatment with the Apolipoprotein A1 Mimetic Peptide Increases Antioxidants and Vascular Repair in Type I Diabetic Rats

Stephen J. Peterson; Daniel Husney; Adam Kruger; Rafał Olszanecki; Francesca Ricci; Luigi F. Rodella; Alessandra Stacchiotti; Rita Rezzani; John A. McClung; Wilbert S. Aronow; Susumu Ikehara; Nader G. Abraham

Apolipoprotein A1 mimetic peptide (D-4F), synthesized from D-amino acid, enhances the ability of high-density lipoprotein to protect low-density lipoprotein (LDL) against oxidation in atherosclerotic disease. Using a rat model of type I diabetes, we investigated whether chronic use of D-4F would lead to up-regulation of heme oxygenase (HO)-1, endothelial cell marker (CD31+), and thrombomodulin (TM) expression and increase the number of endothelial progenitor cells (EPCs). Sprague-Dawley rats were rendered diabetic with streptozotocin (STZ) and either D-4F or vehicle was administered, by i.p. injection, daily for 6 weeks (100 μg/100 g b.wt.). HO activity was measured in liver, kidney, heart, and aorta. After 6 weeks of D-4F treatment, HO activity significantly increased in the heart and aorta by 29 and 31% (p < 0.05 and p < 0.49), respectively. Long-term D-4F treatment also caused a significant increase in TM and CD31+ expression. D-4F administration increased antioxidant capacity, as reflected by the decrease in oxidized protein and oxidized LDL, and enhanced EPC function and/or repair, as evidenced by the increase in EPC endothelial nitric-oxide synthase (eNOS) and prevention of vascular TM and CD31+ loss. In conclusion, HO-1 and eNOS are relevant targets for D-4F and may contribute to the D-4F-mediated increase in TM and CD31+, the antioxidant and anti-inflammatory properties, and confers robust vascular protection in this animal model of type 1 diabetes.


British Journal of Dermatology | 2013

A randomized, double-blind, placebo- and active-controlled, half-head study to evaluate the effects of platelet-rich plasma on alopecia areata

A. Trink; E. Sorbellini; P. Bezzola; Luigi F. Rodella; Rita Rezzani; Yuval Ramot; F. Rinaldi

Alopecia areata (AA) is a common autoimmune condition, causing inflammation‐induced hair loss. This disease has very limited treatment possibilities, and no treatment is either curative or preventive. Platelet‐rich plasma (PRP) has emerged as a new treatment modality in dermatology, and preliminary evidence has suggested that it might have a beneficial role in hair growth.


Hypertension | 2010

Adipocyte Heme Oxygenase-1 Induction Attenuates Metabolic Syndrome in Both Male and Female Obese Mice

Angela Burgess; Ming Li; Luca Vanella; Dong Hyun Kim; Rita Rezzani; Luigi F. Rodella; Komal Sodhi; Martina Canestraro; Pavel Martasek; Stephen J. Peterson; Attallah Kappas; Nader G. Abraham

Increases in visceral fat are associated with increased inflammation, dyslipidemia, insulin resistance, glucose intolerance, and vascular dysfunction. We examined the effect of the potent heme oxygenase (HO)-1 inducer, cobalt protoporphyrin (CoPP), on regulation of adiposity and glucose levels in both female and male obese mice. Both lean and obese mice were administered CoPP intraperitoneally (3 mg/kg once per week) for 6 weeks. Serum levels of adiponectin, tumor necrosis factor &agr; (TNFa), interleukin (IL)-1&bgr; and IL-6, and HO-1, PPAR&ggr;, pAKT, and pAMPK protein expression in adipocytes and vascular tissue were measured. While female obese mice continued to gain weight at a rate similar to controls, induction of HO-1 slowed the rate of weight gain in male obese mice. HO-1 induction led to lowered blood pressure levels in obese male and female mice similar to that of lean male and female mice. HO-1 induction also produced a significant decrease in the plasma levels of IL-6, TNF&agr;, IL-1&bgr;, and fasting glucose of obese females compared to untreated female obese mice. HO-1 induction increased the number and decreased the size of adipocytes of obese animals. HO-1 induction increased adiponectin, pAKT, pAMPK, and PPAR&ggr; levels in adipocyte of obese animals. Induction of HO-1 in adipocytes was associated with an increase in adiponectin and a reduction in inflammatory cytokines. These findings offer the possibility of treating not only hypertension, but also other detrimental metabolic consequences of obesity including insulin resistance and dyslipidemia in obese populations by induction of HO-1 in adipocytes.

Collaboration


Dive into the Rita Rezzani's collaboration.

Researchain Logo
Decentralizing Knowledge