Rita Romani
University of Perugia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rita Romani.
Chemico-Biological Interactions | 2003
Rita Romani; Cinzia Antognelli; Francesca Baldracchini; Alessandra De Santis; Gloria Isani; Elvio Giovannini; Gabriella Rosi
The present study looks at possible changes in the activity of acetylcholinesterase (AChE) in tissues (brain and white muscle) of the Mediterranean bony fish Sparus auratus after a 20 days exposure to sublethal concentrations (0.1 or 0.5 ppm) of copper in the marine water and on control untreated animals. The trials also included measurements of Cu concentration in the tissues to evaluate possible metal accumulation. Moreover, sedimentation analysis as well as V(max) and K(m) determination were carried out in tissue extracts of Cu-exposed or control animals. V(max) and K(m) were also determined with or without addition of Cu(2+) in the assay. No Cu accumulation occurred in brain and muscle after Cu exposure. AChE showed in both tissues a molecular polymorphism with putative globular (G) and asymmetric (A) forms. Cu exposition led to an increased specific activity and improved catalytic efficiency of AChE in brain and muscle, seemingly regarding G forms. The increase in catalytic efficiency also resulted from the in vitro assay with tissue extracts and Cu(2+) addition. The higher AChE activity and catalytic efficiency in both tissues after Cu exposition and without metal accumulation, suggests an increase of free Cu aliquot into the cells, likely due to mechanisms of metal homeostasis.
Breast Cancer Research and Treatment | 2001
Antonio Rulli; Luciano Carli; Rita Romani; Tiziano Baroni; Elvio Giovannini; Gabriella Rosi; Vincenzo Nicola Talesa
The present work aimed to study the activities of glyoxalase system enzymes, glyoxalase I (G I) and glyoxalase II (G II), as well as the expression of their genes in human breast carcinoma. Samples of tumoral tissue and normal counterparts were drawn from several patients during surgery. They served either for preparing extracts to be used in enzyme activity evaluations or for RNA extraction and subsequent northern blot analysis. A far higher activity level of G I and G II occurs in the tumor compared with pair-matched normal tissue, as shown by both spectrophotometrical assay and electrophoretic pattern. Such increased activities of G I and G II likely result from an enhanced enzyme synthesis as a consequence of increased expression of the respective genes in the tumoral tissue, as evidenced by northern blot. The present findings confirm a key-role of glyoxalase system to detoxify cytotoxic methylglyoxal and modulate S-D-lactoylglutathione levels in tumor cells. Moreover, they suggest a possible employment of GI inhibitors as anti-cancer drugs.
Chemico-Biological Interactions | 2001
Vincenzo Nicola Talesa; Rita Romani; Cinzia Antognelli; Elvio Giovannini; Gabriella Rosi
Three forms of acetylcholinesterase (AChE) were detected in samples of the bivalve mollusc Mytilus galloprovincialis collected in sites of the Adriatic sea. Apart from the origin of the mussels, two spontaneously soluble (SS) AChE occur in the hemolymph and represent about 80% of total activity, perhaps hydrolyzing metabolism-borne choline esters. These hydrophilic enzymes (forms A and B) copurified by affinity chromatography (procainamide-Sepharose gel) and were separated by sucrose gradient centrifugation. They are, respectively, a globular tetramer (11.0-12.0 S) and a dimer (6.0-7.0 S) of catalytic subunits. The third form, also purified from tissue extracts by the same affinity matrix, proved to be an amphiphilic globular dimer (7.0 S) with a phosphatidylinositol tail giving cell membrane insertion, detergent (Triton X-100, Brij 96) interaction and self-aggregation. Such an AChE is likely functional in cholinergic synapses. All three AChE forms show a good substrate specificity and are inactive on butyrylthiocholine. Studies with inhibitors showed low inhibition by eserine and paraoxon, especially on SS forms, high sensitivity to 1,5-bis(4-allyldimethylammoniumphenyl)-pentan-3-one dibromide (BW284c51) and no inhibition with propoxur and diisopropylfluorophosphate (DFP). The ChE forms in M. galloprovincialis are possibly encoded by different genes. Some kinetic features of these enzymes suggest a genetic polymorphism.
Chemico-Biological Interactions | 2003
Cinzia Antognelli; Rita Romani; Francesca Baldracchini; Alessandra De Santis; Giulia Andreani; Vincenzo Nicola Talesa
The present study regards possible changes in the activity of glyoxalase system enzymes (glyoxalase I, GI, and glyoxalase II, GII) in tissues (brain, liver and white muscle) of the mediterranean bony fish Sparus auratus after a 20 days exposure to sublethal concentrations (0.1 or 0.5 ppm) of Cu in the marine water and on control untreated animals. The experiments also included measurements of copper concentration in the tissues, as well as of lactate dehydrogenase (LDH) activity, to evaluate possible Cu accumulation and changes in glycolytic activity respectively. Cu accumulation only occurs in the liver. GI, GII and LDH activities kept unchanged in the brain after copper exposure. GI activity in liver and muscle of copper-exposed animals decreases probably for a slackening in the glycolytic rate, as suggested by the lowering of LDH activity. GII activity remains unchanged or increases (liver extract, 0.5 ppm of Cu), maybe to safeguard enough cellular levels of GSH.
Mechanisms of Ageing and Development | 2001
Serena Amici; Alessia Lanari; Rita Romani; Cinzia Antognelli; Virgilio Gallai; Lucilla Parnetti
At present acetylcholinesterase (AChE) inhibitors (AChEIs) represent the only reliable therapeutic resource for symptomatic treatment of Alzheimer Disease (AD). This study was designed to assess the effects of 6-12 month treatment with AChEIs donepezil and rivastigmine on cerebrospinal fluid (CSF) AChE and butyrylcholinesterase (BuChE) activity in AD patients. The pattern of AChE isoforms (G4, G1, G2) before and after treatment was investigated as well. In AD patients treated with donepezil a significant increase of CFS AChE activity was observed, whereas treatment with rivastigmine induced a significant decrease of AChE activity. Both drugs did not change BuChE activity and tended to restore the physiological pattern of AChE isoform. The possible significance of the influence of AChEIs on CSF AChE activity and isoforms is discussed.
Journal of Neurochemistry | 2008
Vincenzo Nicola Talesa; Marta Grauso; Martine Arpagaus; Elvio Giovannini; Rita Romani; Gabriella Rosi
Abstract : Acetylcholinesterase cDNA was cloned by screening a library from Loligo opalescens optic lobes ; cDNA sequence analysis revealed an open reading frame coding for a protein of 610 amino acids that showed 20‐41% amino acid identity with the acetylcholinesterases studied so far. The characteristic structure of cholinesterase (the choline binding site, the catalytic triad, and six cysteines that form three intrachain disulfide bonds) was conserved in the protein. The heterologous expression of acetylcholinesterase in COS cells gave a recovery of acetylcholinesterase activity 20‐fold higher than in controls. The enzyme, partially purified by affinity chromatography, showed molecular and kinetic features indistinguishable from those of acetylcholinesterase expressed in vivo, which displays a high catalytic efficiency. Both enzymes are true acetylcholinesterase corresponding to phosphatidylinositol‐anchored G2a dimers of class I, with a marked substrate specificity for acetylthiocholine. The deduced amino acid sequence may explain some particular kinetic characteristics of Loligo acetylcholinesterase, because the presence of a polar amino acid residue (S313) instead of a nonpolar one [F(288) in Torpedo] in the acyl pocket of the active site could justify the high substrate specificity of the enzyme, the absence of hydrolysis with butyrylthiocholine, and the poor inhibition by the organophosphate diisopropyl fluorophosphate.
European Journal of Cancer | 2002
Ettore Mearini; Rita Romani; Luigi Mearini; Cinzia Antognelli; Alessandro Zucchi; Tiziano Baroni; Massimo Porena; Vincenzo Nicola Talesa
This work aimed to study the activities of the glyoxalase system enzymes (glyoxalase I (GI) and glyoxalase II (GII) and their gene expression in human bladder carcinomas compared with the corresponding normal mucosa. Samples of these tissues were collected from 26 patients with superficial (SBC) or invasive bladder cancer (IBC) and used to evaluate enzyme activity and gene expression by northern blot analysis. In keeping with the electrophoretic pattern and the expression level of the respective genes, GI activity significantly increased in SBC samples, while it remained unchanged in IBC samples compared with the normal mucosa. In contrast, GII showed a higher activity in the tumour (either SBC or IBC samples) versus normal tissues. These results confirm the role of the glyoxalases in detoxifying cytotoxic methylglyoxal (MG) in bladder cancer. The differing levels of GI activity level and gene expression of GI between the SBC and IBC samples could help in their differential diagnosis.
Journal of Physiology-paris | 1998
Martine Arpagaus; Didier Combes; Emmanuel Culetto; Marta Grauso; Yann Fedon; Rita Romani; Jean-Pierre Toutant
Whereas a single gene encodes acetylcholinesterase (AChE) in vertebrates and most insect species, four distinct genes have been cloned and characterized in the nematode Caenorhabditis elegans. We found that ace-1 (mapped to chromosome X) is prominently expressed in muscle cells whereas ace-2 (located on chromosome I) is mainly expressed in neurons. Ace-x and ace-y genes are located in close proximity on chromosome II where they are separated by only a few hundred base pairs. The role of these two genes is still unknown.
American Journal of Medical Genetics Part A | 2011
Paolo Prontera; Laura Bernardini; Gabriela Stangoni; Anna Capalbo; Daniela Rogaia; Rita Romani; Carmela Ardisia; Bruno Dallapiccola; Emilio Donti
We report on a 9‐year‐old female patient with facial anomalies and developmental delay, heterozygous for three de novo rearrangements: a paracentric inversion of chromosome 7, an apparently balanced translocation between chromosome 1 and 7, involving the same inverted chromosome 7, detected by standard cytogenetic analysis [46,XX, der(7) inv(7)(q21.1q32.1)t(1;7)(q23q32.1)]; and a 2p16.1 deletion, spanning about 3.5 Mb of genomic DNA, shown by SNP‐array analysis [arr 2p16.1 (56,706,666–60,234,485)x1 dn]. Clinical features and cytogenetic imbalance in our patient were similar to those reported in five published cases, suggesting that this genomic region is prone to recombination and its hemizygosity results in a distinct although variable spectrum of clinical manifestations.
Journal of Lipid Research | 2009
Rita Romani; Gianna Evelina De Medio; Simona di Tullio; Rosa Lapalombella; Irene Pirisinu; Vittoria Margonato; Arsenio Veicsteinas; Marina Marini; Gabriella Rosi
Paraoxonases (PONs) are a small family of antioxidant enzymes whose antiatherogenic activity is well known. The aim of the present study was the evaluation of the effects of moderate aerobic training on their expression using a rat model. In order to discriminate between PON1 and PON3 enzymatic activity, we took advantage of some differences in their substrate preferences. PON1 and PON3 enzymatic activities and their protein levels were analyzed in plasma and in liver microsomes, and their mRNA levels in the liver. Exercise training did not affect PON1 expression or enzymatic activity but increased PON3 mRNA, protein levels, and enzymatic activity. Training also induced variations in plasma membrane composition, including an increase in polyunsaturated and a decrease in mono- and di-unsaturated fatty acids. On the other hand, acute exercise inhibited PON activities while increasing PON3 protein content in liver microsomes and reversing the relative composition in mono-, di-, and poly-unsaturated fatty acids, suggesting that physical stress, by altering membrane composition, may impair PON release from liver membranes. In conclusion, we documented, for the first time, the presence of PON3 in rat serum and, notably, found that the upregulation of PON3, rather than PON1, appears to be associated with physical training.