Ritam Chatterjee
Calcutta School of Tropical Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ritam Chatterjee.
Proceedings of the Zoological Society | 2016
Ritam Chatterjee; Sukalpa Chattopadhyay; Shalini Sanyal; Suchismita Daw; Sujata Law
AbstractThe conversion of physiology to pathophysiology in hematological disorders viz: aplastic anemia, myelodysplastic syndrome (MDS) and leukemia in murine models was the subject of study in the present programme. Peripheral blood hemogram, spleno-somatic index, bone marrow smear study, cytochemical staining of marrow, cell release kinetics study during marrow explants culture, hematopoietic niche assessment, chromosomal aberration study, plasma membrane stability study of marrow cells, lysosomal membrane and mitochondrial membrane stability study and innate immune parameters were performed in the aplastic anemia, leukemia and MDS mouse model. In bone marrow aplasia, peripheral blood pancytopenia, marrow hypocellularity, decreased marrow cellular viability, deterioration of bone marrow hematopoiesis as well as hematopoietic microenvironment and extramedullary hematopoiesis were noticed. In addition, disruption of mitochondrial and lysosomal membrane integrity along with reduction of innate immune parameters were found in the hematopoietic suppressed condition. Surprisingly, no noticeable chromosomal aberration was found in the aplastic condition. Ineffective marrow hematopoiesis together with the disruption of hematopoietic microenvironment was observed in MDS. Also, extramedullary hematopoiesis, increased marrow cellular death, chromosomal aberration and loss of innate immunity were the common events. During leukemia, the number of functionally and structurally immature cells in the peripheral blood and bone marrow was increased together with malignant conversion of hematopoietic cells in the presence of malignancy supportive stromal microenvironment. Chromosomal aberration, decrease of cell mediated immunity with least mitochondrial apoptotic damage were also found in leukemic condition as well.
Molecular and Cellular Biochemistry | 2013
Malay Chaklader; Ankita Pan; Aditya Law; Sukalpa Chattopadhayay; Ritam Chatterjee; Sujata Law
Different forms of sarcoma (solid or ascitic) often pose a critical medical situation for pediatric or adolescent group of patients. To date, predisposed genetic anomalies and related changes in protein expression are thought to be responsible for sarcoma development. However, in spite of genetic abnormality, role of tumor microenvironment is also indispensable for the evolving neoplasm. In our present study, we characterized the deferentially remodeled microenvironment in solid and ascitic tumors by sequential immunohistochemistry and flowcytometric analysis of E-cdaherin, N-cadherin, vimentin, and cytokeratin along with angiogenesis and metastasis. In addition, we considered flowcytometric apoptosis and CD133 positive cancer stem cell analysis. Comparative hemogram was also considered as a part. Our investigation revealed that both types of tumor promoted neovascularization over time with sign of local inflammation. Invasion of neighboring skeletal muscle by solid sarcoma was more frequent than its ascitic counterpart. In contrary, rapid and earlier cadherin switching (E-cadherin to N-cadherin) in ascitic sarcoma made them more aggressive than that of solid sarcoma and helped to early metastasize distant tissue like liver through the hematogenous route. Differential cadherin switching and infidelity of cytokeratin expression in Vimentin positive sarcoma also influenced the behavior of ascitic CD133+ cancer initiating cell pool with respect to CD133+ cells housed in solid sarcoma. Therefore our study concludes that differential cadherin switching program and infidelity of intermediate filaments in part, sharply discriminate the severity and metastatic potentiality of either type of sarcoma accompanying with CD133+ cellular repertoire. Besides, tumor phenotype-based dichotomous cadherin switching program could be exploited as a future drug target to manage decompensated malignant ascitic and solid sarcoma.
Molecular and Cellular Biochemistry | 2016
Ritam Chatterjee; Sukalpa Chattopadhyay; Sujata Law
Aplastic anemia, the paradigm of bone marrow failure, is characterized by pancytopenic peripheral blood and hypoplastic bone marrow. Among various etiologies, inappropriate use of DNA alkylating drugs like cyclophosphamide and busulfan often causes the manifestation of the dreadful disease. Cell cycle impairment in marrow hematopoietic stem/progenitor compartment together with cellular apoptosis has been recognized as culpable factors behind aplastic pathophysiologies. However, the intricate molecular mechanisms remain unrevealed till date. In the present study, we have dealt with the mechanistic intervention of the disease by peripheral blood hemogram, bone marrow histopathology, cytopathology, hematopoietic kinetic study, scanning electron microscopy, DNA damage assessment and flowcytometric analysis of cellular proliferation and apoptosis in hematopoietic stem/progenitor cell (HSPC) rich marrow compartment using busulfan and cyclophosphamidemediated mouse model. To unveil the molecular mechanisms behind aplastic pathophysiology, we further investigated the role of some crucial mitotic and apoptotic regulators like Protein kinase-B (PKB), Gsk-3β, Cyclin-D1, PP2A, Cdc25c, Plk-1, Aurora kinase-A, Chk-1 regarding the hematopoietic catastrophe. Our observations revealed that the alteration of PKB-GSK-3β axis, Plk-1, and Aurora kinase-A expressions in HSPC compartment due to DNA damage response was associated with the proliferative impairment and apoptosis during aplastic anemia. The study established the correlation between the accumulation of DNA damage and alteration of the mentioned molecules in aplastic HSPCs that lead to the hematopoietic catastrophe. We anticipate that our findings will be beneficial for developing better therapeutic strategies for the dreadful disease concerned.
Chemico-Biological Interactions | 2016
Suchismita Daw; Ritam Chatterjee; Aditya Law; Sujata Law
Hematological disorders like myelodysplastic syndrome (MDS) may arise due to cumulative dysregulation of various signalling pathways controlling proliferation, differentiation, maturation and apoptosis of bone marrow cells. This devastating bone marrow condition can be due to consequential abnormalities in haematopoiesis as well as its supportive microenvironment. Although mutations related to JAK/STAT pathway are common in myeloproliferative neoplasms, further studies are required to fully explore the myelodysplastic scenario regarding the concerned pathway. In this study, we have investigated the JAK-STAT signalling pathway which inevitably plays a crucial role in haematopoiesis. MDS was mimicked in a mouse model with an induction of ENU in adult mice. The bone marrow of the control and MDS groups of animals were subjected to a variety of tests, including cell morphology study in peripheral blood and bone marrow, cytochemistry and histochemistry of bone marrow smears, karyotyping and flowcytometric expression analysis of the phosphorylated forms of proteins like JAK1, STAT3 and STAT5 (denoted as pJAK1, pSTAT3 and pSTAT5) and the phenotypic expression of proteins like CD45 and CD71. The results revealed that the morphology of the blood and bone marrow cells were dysplastic compared to the affected blast populations of different lineages. The expression of common leucocyte antigen CD45 was less in comparison to the expression of transferrin receptor CD71 which was increased in the ENU induced MDS mouse model. Moreover, we have observed an upregulated expression of JAK1 followed by STAT5. Therefore, we can conclude that downregulation of CD45 may have helped in the upregulation of JAK-STAT signaling and CD71 expression. This aberrant signaling may be among one of the activated signaling axes that lead to affected hematopoietic lineages in Myelodysplastic syndrome.
Experimental Cell Research | 2016
Sukalpa Chattopadhyay; Malay Chaklader; Ritam Chatterjee; Aditya Law; Sujata Law
Soft tissue sarcomas are relatively rare, unusual, anatomically diverse group of malignancies. According to the recent literature and medical bulletins, tumor growth and aggressiveness immensely relies on its anatomical locations. However, it is unclear whether the cranio-caudal anatomical axis of the mammalian body can influence sarcoma development and the underlying molecular mechanisms are not yet deciphered. Here, we investigated the growth pattern of solid sarcoma implanted into the murine cranial and caudal anatomical locations and tried to explore the location specific expression pattern of crucial mammalian mitotic regulators such as Aurora kinase A, Histone H3 and c-Myc in the cranio-caudally originated solid tumors. In addition, the influence of local tumor microenvironment on regional sarcoma growth was also taken into consideration. We found that solid sarcoma developed differentially when implanted into two different anatomical locations and most notably, enhanced tumor growth was observed in case of cranially implanted sarcoma than the caudal sarcoma. Interestingly, Aurora kinase A and c-Myc expression and histone H3 phosphorylation level were comparatively higher in the cranial tumor than the caudal. In addition, variation of tumor stroma in a location specific manner also facilitated tumor growth. Cranial sarcoma microenvironment was well vascularized than the caudal one and consequently, a significantly higher microvessel density count was observed which was parallel with low hypoxic response with sign of local tumor inflammation in this region. Taken together, our findings suggest that differential gradient of mitotic regulators together with varied angiogenic response and local tumor microenvironment largely controls solid sarcoma growth along the cranio-caudal anatomical axis.
Pathology Research and Practice | 2018
Sujata Law; Shalini Sanyal; Ritam Chatterjee; Atrayo Law; Aditya Law; Sukalpa Chattopadhyay
RELEVANCE Malignant peritoneal sarcomatosis related ascitic formation often leads to grave consequences but the therapeutic management of the fatal pathophysiological condition remains a rarely discussed issue. The present study investigates the anti-neoplastic activity of the plant alkaloid from Ruta graveolens on ascitic Sarcoma-180 bearing mice as a model of human malignant peritoneal ascites. MATERIALS AND METHODS The efficacy of the loco-regional administration of Ruta graveolens on tumour cells was explored with cytopathological and cytotoxicological studies, along with the expressional modulation vital regulatory molecules viz. Chk2, c-Myc, CD95 and Aurora kinase. RESULTS The study revealed a series of anti-neoplastic events exerted by Ruta graveolens that included the boosting of anti-tumour immunity, generation of tumour cell cytotoxicity and disruption of cellular energetics which lead to the induction of apoptosis and simultaneous impairment of cell division in tumour cells. Expressional decline of c-Myc oncoproteins and mitosis promoter Aurora kinase A together with up regulation of vital tumour suppressor Chk-2 and apoptosis inducer CD 95 in ascitic tumour cells was also found to be associated with Ruta administration. CONCLUSION Our observations revealed that loco-regional Ruta administration resulted in the anti-neoplastic effect on peritoneal sarcoma related ascites and the alteration of vital regulatory molecules which depicted the therapeutic utility of Ruta in the management of peritoneal malignant ascites.
European Journal of Cell Biology | 2018
Ritam Chatterjee; Sujata Law
Aplastic anemia or bone marrow failure often develops as an effect of chemotherapeutic drug application for the treatment of various pathophysiological conditions including cancer. The long-term bone marrow injury affects the basic hematopoietic population including hematopoietic stem/progenitor cells (HSPCs). The present study aimed in unearthing the underlying mechanisms of chemotherapeutics mediated bone marrow aplasia with special focus on altered redox status and associated effects on hematopoietic microenvironment and epigenetic status of hematopoietic cells. The study involves the development of busulfan and cyclophosphamide mediated mouse model for aplastic anemia, characterization of the disease with blood and marrow analysis, cytochemical examinations of bone marrow, flowcytometric analysis of hematopoietic population and microenvironmental components, determination of ROS generation, apoptosis profiling, expressional studies of Notch-1 signaling cascade molecules, investigation of epigenetic modifications including global CpG methylation of DNA, phosphorylation of histone-3 with their effects on bone marrow kinetics and expressional analysis of the anti-oxidative molecules viz; SOD-2 and Sdf-1. Severe hematopoietic catastrophic condition was observed during aplastic anemia which involved peripheral blood pancytopenia, marrow hypocellularity and decreased hematopoietic stem/progenitor population. Generation of ROS was found to play a central role in the cellular devastation in aplastic marrow which on one hand can be correlated with the destruction of hematopoiesis supportive niche components and alteration of vital Notch-1 signaling and on other hand was found to be associated with the epigenetic chromatin modifications viz; global DNA CpG hypo-methylation, histone-3 phosphorylation promoting cellular apoptosis. Decline of anti-oxidant components viz; Sdf-1 and SOD-2 hinted towards the irreversible nature of the oxidative damage during marrow aplasia. Collectively, the findings hinted towards the mechanistic correlation among ROS generation, microenvironmental impairment and epigenetic alterations that led to hematopoietic catastrophe under aplastic stress. The findings may potentiate successful therapeutic strategy development for the dreadful condition concerned.
Leukemia Research | 2016
Ritam Chatterjee; Sukalpa Chattopadhyay; Sujata Law
Experimental Oncology | 2012
Malay Chaklader; P. Das; Jacintha Archana Pereira; Aditya Law; Sukalpa Chattopadhyay; Ritam Chatterjee; A. Mondal; Sujata Law
Environmental Toxicology | 2016
Sukalpa Chattopadhyay; Ritam Chatterjee; Sujata Law