Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ritobrata Goswami is active.

Publication


Featured researches published by Ritobrata Goswami.


Nature Immunology | 2010

The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation

Hua Chen Chang; Sarita Sehra; Ritobrata Goswami; Weiguo Yao; Qing Yu; Gretta L. Stritesky; Rukhsana Jabeen; Carl McKinley; Ayele Nati N Ahyi; Ling Han; Evelyn T. Nguyen; Michael J. Robertson; Narayanan B. Perumal; Robert S. Tepper; Stephen L. Nutt; Mark H. Kaplan

CD4+ helper T cells acquire effector phenotypes that promote specialized inflammatory responses. We show that the ETS-family transcription factor PU.1 was required for the development of an interleukin 9 (IL-9)-secreting subset of helper T cells. Decreasing PU.1 expression either by conditional deletion in mouse T cells or the use of small interfering RNA in human T cells impaired IL-9 production, whereas ectopic PU.1 expression promoted IL-9 production. Mice with PU.1-deficient T cells developed normal T helper type 2 (TH2) responses in vivo but showed attenuated allergic pulmonary inflammation that corresponded to lower expression of Il9 and chemokines in peripheral T cells and in lungs than that of wild-type mice. Together our data suggest a critical role for PU.1 in generating the IL-9-producing (TH9) phenotype and in the development of allergic inflammation.


Journal of Immunology | 2011

A Brief History of IL-9

Ritobrata Goswami; Mark H. Kaplan

IL-9 was first described in the late 1980s as a member of a growing number of cytokines that had pleiotropic functions in the immune system. Although many biological functions have been attributed to IL-9, it remains an understudied cytokine. A resurgence of interest in IL-9 has been spurred by recent work demonstrating a role for IL-9 in regulating inflammatory immunity and defining the transcription factors that activate the Il9 gene in cells that most efficiently produce IL-9. In this review, we summarize the characterization of IL-9 biological activities, highlight roles for the cytokine that are clearly defined, and outline questions regarding IL-9 functions that still require further exploration.


Journal of Immunology | 2012

STAT6-Dependent Regulation of Th9 Development

Ritobrata Goswami; Rukhsana Jabeen; Ryoji Yagi; Duy Pham; Shreevrat Goenka; Mark H. Kaplan

Th cell effector subsets develop in response to specific cytokine environments. The development of a particular cytokine-secreting pattern requires an integration of signals that may promote the development of opposing pathways. A recent example of this paradigm is the IL-9–secreting Th9 cell that develops in response to TGF-β and IL-4, cytokines that, in isolation, promote the development of inducible regulatory T cells and Th2 cells, respectively. To determine how the balance of these factors results in priming for IL-9 secretion, we examined the effects of each pathway on transcription factors that regulate Th cell differentiation. We demonstrated that TGF-β induces the PU.1-encoding Sfpi1 locus and that this is independent of IL-4–induced STAT6 activation. IL-4–activated STAT6 is required for repressing the expression of T-bet and Foxp3 in Th9 cells, transcription factors that inhibit IL-9 production, and STAT6 is required for the induction of IRF4, which promotes Th9 development. These data established a transcription factor network that regulates IL-9 and demonstrated how combinations of cytokine signals generate cytokine-secreting potential by altering the expression of a panel of transcription factors.


Journal of Clinical Investigation | 2013

Th9 cell development requires a BATF-regulated transcriptional network

Rukhsana Jabeen; Ritobrata Goswami; Olufolakemi Awe; Aishwarya Kulkarni; Evelyn T. Nguyen; Andrea Attenasio; Daniel Walsh; Matthew R. Olson; Myung H. Kim; Robert S. Tepper; Jie Sun; Chang H. Kim; Elizabeth J. Taparowsky; Baohua Zhou; Mark H. Kaplan

T helper 9 (Th9) cells are specialized for the production of IL-9, promote allergic inflammation in mice, and are associated with allergic disease in humans. It has not been determined whether Th9 cells express a characteristic transcriptional signature. In this study, we performed microarray analysis to identify genes enriched in Th9 cells compared with other Th subsets. This analysis defined a transcriptional regulatory network required for the expression of a subset of Th9-enriched genes. The activator protein 1 (AP1) family transcription factor BATF (B cell, activating transcription factor–like) was among the genes enriched in Th9 cells and was required for the expression of IL-9 and other Th9-associated genes in both human and mouse T cells. The expression of BATF was increased in Th9 cultures derived from atopic infants compared with Th9 cultures from control infants. T cells deficient in BATF expression had a diminished capacity to promote allergic inflammation compared with wild-type controls. Moreover, mouse Th9 cells ectopically expressing BATF were more efficient at promoting allergic inflammation than control transduced cells. These data indicate that BATF is a central regulator of the Th9 phenotype and contributes to the development of allergic inflammation.


Journal of Clinical Investigation | 2014

Skin exposure promotes a Th2-dependent sensitization to peanut allergens

Leticia Tordesillas; Ritobrata Goswami; Sara Benedé; Galina Grishina; David Dunkin; Kirsi M. Järvinen; Soheila J. Maleki; Hugh A. Sampson; M. Cecilia Berin

Sensitization to foods often occurs in infancy, without a known prior oral exposure, suggesting that alternative exposure routes contribute to food allergy. Here, we tested the hypothesis that peanut proteins activate innate immune pathways in the skin that promote sensitization. We exposed mice to peanut protein extract on undamaged areas of skin and observed that repeated topical exposure to peanut allergens led to sensitization and anaphylaxis upon rechallenge. In mice, this epicutaneous peanut exposure induced sensitization to the peanut components Ara h 1 and Ara h 2, which is also observed in human peanut allergy. Both crude peanut extract and Ara h 2 alone served as adjuvants, as both induced a bystander sensitization that was similar to that induced by the atopic dermatitis-associated staphylococcal enterotoxin B. In cultured human keratinocytes and in murine skin, peanut extract directly induced cytokine expression. Moreover, topical peanut extract application induced an alteration dependent on the IL-33 receptor ST2 in skin-draining DCs, resulting in Th2 cytokine production from T cells. Together, our data support the hypothesis that peanuts are allergenic due to inherent adjuvant activity and suggest that skin exposure to food allergens contributes to sensitization to foods in early life.


Journal of Immunology | 2012

Gcn5 Is Required for PU.1-Dependent IL-9 Induction in Th9 Cells

Ritobrata Goswami; Mark H. Kaplan

Naive CD4+ T cells differentiate into various effector Th subsets depending on the Ags and cytokine microenvironment they encounter. IL-9–secreting Th9 cells are the most recent Th subset to be described. PU.1, one of the transcription factors required for the development of Th9 cells, binds to the Il9 gene. In this study, we show that PU.1 increases histone acetylation at the Il9 locus through direct interactions with histone acetyltransferases. In the absence of PU.1, there is decreased association of Gcn5 and p300/CBP associated factor and increased association of histone deacetylases at the Il9 locus in Th9 cells. Inhibition of histone deacetylase activity augments PU.1-dependent IL-9 production. PU.1 forms a complex with Gcn5, and inhibition of the expression of Gcn5 results in reduced IL-9 production. Moreover, the effects of Gcn5 on IL-9 production are specific as the production of IL-10 and IL-21, two additional cytokines produced by Th9 cells, is not altered after decreased Gcn5 expression. Together, these data define a PU.1-dependent mechanism for altered histone acetylation and expression of the Il9 locus in Th9 cells.


Blood | 2009

Impaired development of human Th1 cells in patients with deficient expression of STAT4.

Hua Chen Chang; Ling Han; Ritobrata Goswami; Evelyn T. Nguyen; David Pelloso; Michael J. Robertson; Mark H. Kaplan

IL-12 activates STAT4, which is a critical regulator of inflammation and T helper type I (Th1) lineage development in murine systems. The requirement for STAT4 in the generation of human Th1 cells has not been examined thoroughly. Compared with control Th1 cultures, expression of the Th1 genes IFNgamma, IL-12Rbeta2, and TNFalpha is greatly reduced in Th1 cultures of CD4 T cells isolated from lymphoma patients after autologous stem cell transplantation who have acquired STAT4 deficiency. Moreover, IL-4 and IL-5 production is increased in patient Th1 cultures though there are no defects in the development of Th2 cells. Reconstitution of STAT4 in patient T cells allowed recovery of IFNgamma and IL-12Rbeta2 expression, whereas ectopic expression of IL-12Rbeta2 did not rescue STAT4 expression, and increased IFNgamma production only to levels intermediate between control and patient samples. These results demonstrate that, as in murine systems, STAT4 is required for optimal human Th1 lineage development.


Journal of Immunology | 2015

The TNF-Family Ligand TL1A and Its Receptor DR3 Promote T Cell–Mediated Allergic Immunopathology by Enhancing Differentiation and Pathogenicity of IL-9–Producing T Cells

Arianne C. Richard; Cuiyan Tan; Eric T. Hawley; Julio Gomez-Rodriguez; Ritobrata Goswami; Xiang Ping Yang; Anthony C. Cruz; Pallavi Penumetcha; Erika T. Hayes; Martin Pelletier; Odile Gabay; Matthew C. Walsh; John R. Ferdinand; Andrea Keane-Myers; Yongwon Choi; John J. O'Shea; Aymen Al-Shamkhani; Mark H. Kaplan; Igal Gery; Richard M. Siegel; Françoise Meylan

The TNF family cytokine TL1A (Tnfsf15) costimulates T cells and type 2 innate lymphocytes (ILC2) through its receptor DR3 (Tnfrsf25). DR3-deficient mice have reduced T cell accumulation at the site of inflammation and reduced ILC2-dependent immune responses in a number of models of autoimmune and allergic diseases. In allergic lung disease models, immunopathology and local Th2 and ILC2 accumulation is reduced in DR3-deficient mice despite normal systemic priming of Th2 responses and generation of T cells secreting IL-13 and IL-4, prompting the question of whether TL1A promotes the development of other T cell subsets that secrete cytokines to drive allergic disease. In this study, we find that TL1A potently promotes generation of murine T cells producing IL-9 (Th9) by signaling through DR3 in a cell-intrinsic manner. TL1A enhances Th9 differentiation through an IL-2 and STAT5-dependent mechanism, unlike the TNF-family member OX40, which promotes Th9 through IL-4 and STAT6. Th9 differentiated in the presence of TL1A are more pathogenic, and endogenous TL1A signaling through DR3 on T cells is required for maximal pathology and IL-9 production in allergic lung inflammation. Taken together, these data identify TL1A–DR3 interactions as a novel pathway that promotes Th9 differentiation and pathogenicity. TL1A may be a potential therapeutic target in diseases dependent on IL-9.


Blood | 2011

STAT3-dependent IL-21 production from T helper cells regulates hematopoietic progenitor cell homeostasis

Mark H. Kaplan; Nicole L. Glosson; Gretta L. Stritesky; Norman Yeh; John Kinzfogl; Sara Rohrabaugh; Ritobrata Goswami; Duy Pham; David E. Levy; Randy R. Brutkiewicz; Janice S. Blum; Scott Cooper; Giao Hangoc; Hal E. Broxmeyer

The contribution of specific cell types to the production of cytokines that regulate hematopoiesis is still not well defined. We have previously identified T cell-dependent regulation of hematopoietic progenitor cell (HPC) numbers and cycling. In this report, we demonstrated that HPC activity is decreased in mice with STAT3-deficient T cells, a phenotype that is not because of decreased expression of IL-17 or RORγt. STAT3 expression in T cells was required for IL-21 production by multiple T helper subsets, and neutralization of IL-21 resulted in decreased HPC activity identical to that in mice with STAT3-deficient T cells. Importantly, injection of IL-21 rescued HPC activity in mice with STAT3-deficient T cells. Thus, STAT3-dependent IL-21 production in T cells is required for HPC homeostasis.


The Journal of Allergy and Clinical Immunology | 2017

Systemic innate immune activation in food protein–induced enterocolitis syndrome

Ritobrata Goswami; Ana Belén Blázquez; Roman Kosoy; Adeeb Rahman; Anna Nowak-Węgrzyn; M. Cecilia Berin

Background Food protein–induced enterocolitis syndrome (FPIES) is a non–IgE‐mediated food allergy of infancy whose pathophysiology is poorly understood. Objectives We set out to identify and phenotype allergen‐responsive cells in peripheral blood of a cohort of subjects undergoing supervised food challenge for FPIES. Methods We profiled antigen‐responsive cells in PBMCs by flow cytometry, and examined cells in whole blood obtained before and after challenge by CyTOF mass cytometry and RNAseq. Results Using a CD154‐based detection approach, we observed that milk, soy, or rice‐responsive T cells, and TNF‐&agr;–producing CD154+ T cells, were significantly lower in those with outgrown FPIES compared with those with active FPIES. However, levels were within the normal range and were inconsistent with a role in the pathophysiology of FPIES. Profiling of whole blood by CyTOF demonstrated profound activation of cells of the innate immune system after food challenge, including monocytes, neutrophils, natural killer cells, and eosinophils. Activation was not observed in children with outgrown FPIES. We confirmed this pattern of innate immune activation in a larger cohort by RNAseq. Furthermore, we observed pan–T‐cell activation and redistribution from the circulation after a positive food challenge but not in those who had outgrown their FPIES. Conclusions Our data demonstrate a compelling role of systemic innate immune activation in adverse reactions elicited by foods in FPIES. Further investigation is needed to identify the mechanism of antigen specificity of adverse reactions to foods in FPIES. Graphical abstract Figure. No caption available.

Collaboration


Dive into the Ritobrata Goswami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Keane-Myers

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Anthony C. Cruz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cuiyan Tan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric T. Hawley

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Erika T. Hayes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Françoise Meylan

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge