Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ritu Aneja is active.

Publication


Featured researches published by Ritu Aneja.


Medicinal Research Reviews | 2011

Drugs That Target Dynamic Microtubules: A New Molecular Perspective

Richard A. Stanton; Kim M. Gernert; James H. Nettles; Ritu Aneja

Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule‐binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These “biological vectors” can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule‐targeting drugs work.   © 2011 Wiley Periodicals, Inc. Med Res Rev, 31, No. 3, 443‐481, 2011


Cancer Research | 2006

Reversal of P-glycoprotein–Mediated Multidrug Resistance in Cancer Cells by the c-Jun NH2-Terminal Kinase

Jun Zhou; Min Liu; Ritu Aneja; Ramesh Chandra; Hermann Lage; Harish C. Joshi

A significant impediment to the success of cancer chemotherapy is multidrug resistance (MDR). A typical form of MDR is attributable to the overexpression of membrane transport proteins, such as P-glycoprotein, resulting in an increased drug efflux. In this study, we show that adenovirus-mediated enhancement of the c-Jun NH2-terminal kinase (JNK) reduces the level of P-glycoprotein in a dose- and time-dependent manner. Protein turnover assay shows that the decrease of P-glycoprotein is independent of its protein stability. Instead, this occurs primarily at the mRNA level, as revealed by reverse transcription-PCR analysis. We find that P-glycoprotein down-regulation requires the catalytic activity of JNK and is mediated by the c-Jun transcription factor, as either pharmacologic inhibition of JNK activity or dominant-negative suppression of c-Jun remarkably abolishes the ability of JNK to down-regulate P-glycoprotein. In addition, electrophoretic mobility shift assay reveals that adenoviral JNK increases the activator protein binding activity of the mdr1 gene in the MDR cells. We further show that the decrease of P-glycoprotein level is associated with a significant increase in intracellular drug accumulation and dramatically enhances the sensitivity of MDR cancer cells to chemotherapeutic agents. Our study provides the first direct evidence that enhancement of the JNK pathway down-regulates P-glycoprotein and reverses P-glycoprotein-mediated MDR in cancer cells.


Journal of Biological Chemistry | 2010

Induction of Reactive Oxygen Species-mediated Autophagy by a Novel Microtubule-modulating Agent

Prasanthi Karna; Susu M. Zughaier; Vaishali Pannu; Robert B. Simmons; Satya Narayan; Ritu Aneja

Autophagy is being increasingly implicated in both cell survival and death. However, the intricate relationships between drug-induced autophagy and apoptosis remain elusive. Here we demonstrate that a tubulin-binding noscapine analog, (R)-9-bromo-5-((S)-4,5-dimethoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-6-methyl-5,6,7,8-tetrahydro-[1,3]-di-oxolo[4,5-g]isoquinoline (Red-Br-nos), exerts a novel autophagic response followed by apoptotic cell death in human prostate cancer PC-3 cells. Red-Br-nos-induced autophagy was an early event detectable within 12 h that displayed a wide array of characteristic features including double membranous vacuoles with entrapped organelles, acidic vesicular organelles, and increased expression of LC3-II and beclin-1. Red-Br-nos-triggered release of reactive oxygen species (ROS) and attenuation of ROS by tiron, a ROS scavenger, reduced the sub-G1 population suggesting ROS-dependent apoptosis. Abrogation of ROS also reduced autophagy indicating that ROS triggers autophagy. Pharmacological and genetic approaches to inhibit autophagy uncovered the protective role of Red-Br-nos-induced autophagy in PC-3 cells. Direct effects of the drug on mitochondria viz. disruption of normal cristae architecture and dissipation of mitochondrial transmembrane potential revealed a functional link between ROS generation, autophagy, and apoptosis induction. This is the first report to demonstrate the protective role of ROS-mediated autophagy and induction of caspase-independent ROS-dependent apoptosis in PC-3 cells by Red-Br-nos, a member of the noscapinoid family of microtubule-modulating anticancer agents.


Journal of Biological Chemistry | 2006

Inhibition of the Mitotic Kinesin Eg5 Up-regulates Hsp70 through the Phosphatidylinositol 3-Kinase/Akt Pathway in Multiple Myeloma Cells

Min Liu; Ritu Aneja; Chunyong Liu; Lei Sun; Jinmin Gao; Hongxia Wang; Jin-Tang Dong; Vasiliki Sarli; Athanassios Giannis; Harish C. Joshi; Jun Zhou

The microtubule-dependent motor protein Eg5 plays a critical role in spindle assembly and maintenance in mitosis. Herein we show that the suppression of Eg5 by a specific inhibitor arrested mitosis, induced apoptosis, and up-regulated Hsp70 in human multiple myeloma cells. Mechanistically, Hsp70 induction occurred at the transcriptional level via a cis-regulatory DNA element in Hsp70 promoter and was mediated by the phosphatidylinositol 3-kinase/Akt pathway. Eg5 inhibitor-mediated Hsp70 up-regulation is cytoprotective because blocking Hsp70 induction directly by antisense or small interfering RNA or indirectly by inhibiting the phosphatidylinositol 3-kinase/Akt pathway significantly increased Eg5 inhibitor-induced apoptosis. Furthermore, a farnesyltransferase inhibitor interacted synergistically with the Eg5 inhibitor in inducing apoptosis through disrupting the Akt/Hsp70 signaling axis. These findings provide the first evidence for Eg5 inhibitor activity in hematologic malignancy and identify Hsp70 up-regulation as a critical mechanism responsible for modulating myeloma cell sensitivity to Eg5 inhibitors. In addition, these findings suggest that a combination of Eg5 inhibitors with agents abrogating Hsp70 induction would be useful for myeloma therapy in the clinic.


Molecular Pharmacology | 2006

Development of a Novel Nitro-Derivative of Noscapine for the Potential Treatment of Drug-Resistant Ovarian Cancer and T-Cell Lymphoma

Ritu Aneja; Surya N. Vangapandu; Manu Lopus; Ramesh Chandra; Dulal Panda; Harish C. Joshi

We have shown previously that an antitussive plant alkaloid, noscapine, binds tubulin, displays anticancer activity, and has a safe pharmacological profile in humans. Structure-function analyses pointed to a proton at position-9 of the isoquinoline ring that can be modified without compromising tubulin binding activity. Thus, many noscapine analogs with different functional moieties at position-9 were synthesized. Those analogs that kill human cancer cells resistant to other antimicrotubule agents, vincas and taxanes, were screened. Here, we present one such analog, 9-nitro-noscapine (9-nitro-nos), which binds tubulin and induces apoptosis selectively in tumor cells (ovarian and T-cell lymphoma) resistant to paclitaxel, vinblastine, and teniposide. 9-Nitro-nos treatment at doses as high as 100 μM did not affect the cell cycle profile of normal human fibroblasts. This selectivity of 9-nitro-nos for cancer cells represents a unique edge over the other available antimitotics. 9-Nitro-nos perturbs the progression of cell cycle by mitotic arrest, followed by apoptotic cell death associated with increased caspase-3 activation and appearance of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells. Thus, we conclude that 9-nitro-nos has great potential to be a novel therapeutic agent for ovarian and T-cell lymphoma cancers, even those that have become drug-resistant to currently available chemotherapeutic drugs.


Cancer Research | 2007

p53 and p21 determine the sensitivity of noscapine-induced apoptosis in colon cancer cells.

Ritu Aneja; Amr M. Ghaleb; Jun Zhou; Vincent W. Yang; Harish C. Joshi

We have previously discovered the naturally occurring antitussive alkaloid noscapine as a tubulin-binding agent that attenuates microtubule dynamics and arrests mammalian cells at mitosis via activation of the c-Jun NH(2)-terminal kinase pathway. It is well established that the p53 protein plays a crucial role in the control of tumor cell response to chemotherapeutic agents and DNA-damaging agents; however, the relationship between p53-driven genes and drug sensitivity remains controversial. In this study, we compared chemosensitivity, cell cycle distribution, and apoptosis on noscapine treatment in four cell lines derived from the colorectal carcinoma HCT116 cells: p53(+/+) (p53-wt), p53(-/-) (p53-null), p21(-/-) (p21-null), and BAX(-/-) (BAX-null). Using these isogenic variants, we investigated the roles of p53, BAX, and p21 in the cellular response to treatment with noscapine. Our results show that noscapine treatment increases the expression of p53 over time in cells with wild-type p53 status. This increase in p53 is associated with an increased apoptotic BAX/Bcl-2 ratio consistent with increased sensitivity of these cells to apoptotic stimuli. Conversely, loss of p53 and p21 alleles had a counter effect on both BAX and Bcl-2 expression and the p53-null and p21-null cells were significantly resistant to the antiproliferative and apoptotic effects of noscapine. All but the p53-null cells displayed p53 protein accumulation in a time-dependent manner on noscapine treatment. Interestingly, despite increased levels of p53, p21-null cells were resistant to apoptosis, suggesting a proapoptotic role of p21 and implying that p53 is a necessary but not sufficient condition for noscapine-mediated apoptosis.


Brain Research | 2008

Nitric oxide associated with iNOS expression inhibits acetylcholinesterase activity and induces memory impairment during acute hypobaric hypoxia

Malairaman Udayabanu; D. Kumaran; R. Unnikrishnan Nair; P. Srinivas; Neeta Bhagat; Ritu Aneja; Anju Katyal

The mechanisms responsible for cholinergic dysfunction associated learning and memory impairment during hypoxia are not well-understood. However it is known that inflammatory mediators like inducible nitric oxide synthase (iNOS) hamper the functions of cholinergic neurons. In this present experiment we made an effort to study the iNOS expression mediated retrograde and anterograde memory impairment in Balb/c mice following acute hypobaric hypoxia (at an altitude of 23,000ft for 6h) using elevated plus maze and passive avoidance step-through tasks. Our results demonstrated that hypoxia transiently impairs the retrograde memory without affecting the anterograde memory functions, accompanied with a substantial rise in iNOS expression and nitric oxide levels in cerebral cortex on days 2 and 3 post hypoxia. Treatment with aminoguanidine (iNOS inhibitor ), resulted in down-regulation of the iNOS expression, attenuation of the surge of nitric oxide (NO) in cerebral cortex and reversal of retrograde memory impairment due to hypoxia. Moreover the reduced AChE activity and elevated lipid peroxidation in cerebral cortex were evident during post hypoxia re-oxygenation period, which was not observed in the hippocampus. Additionally, NO donor spermine NONOate could inhibit the AChE activity in brain homogenates in a concentration-dependent manner, which further substantiate that nitric oxide produced during post hypoxia re-oxygenation, primarily contributes to the observed inhibition of cortical AChE activity. Based on these experiments we hypothesize that the NO burst as a result of iNOS upregulation during hypoxia interrupts the memory consolidation by altering the cholinergic functions.


Journal of Controlled Release | 2011

Enhanced noscapine delivery using uPAR-targeted optical-MR imaging trackable nanoparticles for prostate cancer therapy

Mohamed O. Abdalla; Prasanthi Karna; Hari Krishna Sajja; Hui Mao; Clayton Yates; Timothy Turner; Ritu Aneja

The tubulin-binding anticancer activity of noscapine, an orally available plant-derived anti-tussive alkaloid, has been recently identified. Noscapine inhibits tumor growth in nude mice bearing human xenografts of hematopoietic, breast, lung, ovarian, brain and prostate origin. Despite its nontoxic attributes, significant elimination of the disease has not been achieved, perhaps since the bioavailability of noscapine to tumors saturates at an oral dose of 300 mg/kg body weight. To enable the selective and specific delivery of noscapine to prostate cancer cells, we have engineered a multifunctional nanoscale delivery vehicle that takes advantage of urokinase plasminogen activator receptor (uPAR) overexpression in prostate cancer compared to normal prostate epithelia and can be tracked by magnetic resonance imaging (MRI) and near-infrared (NIR) imaging. Specifically, we employed the human-type 135 amino-acid amino-terminal fragment (hATF) of urokinase plasminogen activator (uPA), a high-affinity natural ligand for uPAR. Noscapine (Nos) was efficiently adsorbed onto the amphiphilic polymer coating of uPAR-targeted nanoparticles (NPs). Nos-loaded NPs were uniformly compact-sized, stable at physiological pH and efficiently released the drug at pH 4 to 5 within a span of 4h. Our results demonstrate that these uPAR-targeted NPs were capable of binding to the receptor and were internalized by PC-3 cells. uPAR-targeted Nos-loaded NPs enhanced intracellular noscapine accumulation as evident by the ~6-fold stronger inhibitory effect on PC-3 growth compared to free noscapine. In addition, Nos-loaded iron oxide NPs maintained their T2 MRI contrast effect upon internalization into tumor cells owing to their significant susceptibility effect in cells. Thus, our data provide compelling evidence that these optically and magnetic resonance imaging (MRI)-trackable uPAR-targeted NPs may offer a great potential for image-directed targeted delivery of noscapine for the management of prostate cancer.


Journal of Biological Chemistry | 2011

Regulation of Tat Acetylation and Transactivation Activity by the Microtubule-associated Deacetylase HDAC6

Lihong Huo; Dengwen Li; Xiaoou Sun; Xingjuan Shi; Prasanthi Karna; Wei Yang; Min Liu; Wentao Qiao; Ritu Aneja; Jun Zhou

Reversible acetylation of Tat is critical for its transactivation activity toward HIV-1 transcription. However, the enzymes involved in the acetylation/deacetylation cycles have not been fully characterized. In this study, by yeast two-hybrid assay, we have discovered the histone deacetylase HDAC6 to be a binding partner of Tat. Our data show that HDAC6 interacts with Tat in the cytoplasm in a microtubule-dependent manner. In addition, HDAC6 deacetylates Tat at Lys-28 and thereby suppresses Tat-mediated transactivation of the HIV-1 promoter. Inactivation of HDAC6 promotes the interaction of Tat with cyclin T1 and leads to an increase in Tat transactivation activity. These findings establish HDAC6 as a Tat deacetylase and support a model in which Lys-28 deacetylation decreases Tat transactivation activity through affecting the ability of Tat to form a ribonucleoprotein complex with cyclin T1 and the transactivation-responsive RNA.


Cell Death & Differentiation | 2012

Let's huddle to prevent a muddle: centrosome declustering as an attractive anticancer strategy.

A Ogden; Padmashree C.G. Rida; Ritu Aneja

Nearly a century ago, cell biologists postulated that the chromosomal aberrations blighting cancer cells might be caused by a mysterious organelle—the centrosome—that had only just been discovered. For years, however, this enigmatic structure was neglected in oncologic investigations and has only recently reemerged as a key suspect in tumorigenesis. A majority of cancer cells, unlike healthy cells, possess an amplified centrosome complement, which they manage to coalesce neatly at two spindle poles during mitosis. This clustering mechanism permits the cell to form a pseudo-bipolar mitotic spindle for segregation of sister chromatids. On rare occasions this mechanism fails, resulting in declustered centrosomes and the assembly of a multipolar spindle. Spindle multipolarity consigns the cell to an almost certain fate of mitotic arrest or death. The catastrophic nature of multipolarity has attracted efforts to develop drugs that can induce declustering in cancer cells. Such chemotherapeutics would theoretically spare healthy cells, whose normal centrosome complement should preclude multipolar spindle formation. In search of the ‘Holy Grail’ of nontoxic, cancer cell-selective, and superiorly efficacious chemotherapy, research is underway to elucidate the underpinnings of centrosome clustering mechanisms. Here, we detail the progress made towards that end, highlighting seminal work and suggesting directions for future research, aimed at demystifying this riddling cellular tactic and exploiting it for chemotherapeutic purposes. We also propose a model to highlight the integral role of microtubule dynamicity and the delicate balance of forces on which cancer cells rely for effective centrosome clustering. Finally, we provide insights regarding how perturbation of this balance may pave an inroad for inducing lethal centrosome dispersal and death selectively in cancer cells.

Collaboration


Dive into the Ritu Aneja's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Ogden

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Vaishali Pannu

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Sergey Klimov

Georgia State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge