Ritu Tiwari
Indian Institute of Information Technology and Management, Gwalior
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ritu Tiwari.
Artificial Intelligence Review | 2010
Rahul Kala; Anupam Shukla; Ritu Tiwari
Robotic Path planning is one of the most studied problems in the field of robotics. The problem has been solved using numerous statistical, soft computing and other approaches. In this paper we solve the problem of robotic path planning using a combination of A* algorithm and Fuzzy Inference. The A* algorithm does the higher level planning by working on a lower detail map. The algorithm finds the shortest path at the same time generating the result in a finite time. The A* algorithm is used on a probability based map. The lower level planning is done by the Fuzzy Inference System (FIS). The FIS works on the detailed graph where the occurrence of obstacles is precisely known. The FIS generates smoother paths catering to the non-holonomic constraints. The results of A* algorithm serve as a guide for FIS planner. The FIS system was initially generated using heuristic rules. Once this model was ready, the fuzzy parameters were optimized using a Genetic Algorithm. Three sample problems were created and the quality of solutions generated by FIS was used as the fitness function of the GA. The GA tried to optimize the distance from the closest obstacle, total path length and the sharpest turn at any time in the journey of the robot. The resulting FIS was easily able to plan the path of the robot. We tested the algorithm on various complex and simple paths. All paths generated were optimal in terms of path length and smoothness. The robot was easily able to escape a variety of obstacles and reach the goal in an optimal manner.
computer science and information engineering | 2009
Rahul Kala; Anupam Shukla; Ritu Tiwari; Sourabh Rungta; Rekh Ram Janghel
The pace of development and automation urge the need of robots controlling much of the work which used to be done mainly by humans. The modern technology has emphasized on the need to move a robot in an environment which is dynamically changing. An example of such an application may be the use of robots in industry to carry tools and other materials from one place to other. Since many robots would be working together, we need to ensure a collision free navigation plan for each of the robots.In this paper we find out the nearly most optimal path of the robot using Genetic, ANN and A* algorithms at each instant of time of robot travel. It may be used by the industry to send robots for surveys, data acquisition, doing specific work etc. The collision free movement of robot in a moving obstacle environment can be used to move robot in a world of robots.Results show that all 3 algorithms are able to move the robot without any collisions.
Neurocomputing | 2011
Rahul Kala; Anupam Shukla; Ritu Tiwari
Path Planning is a classical problem in the field of robotics. The problem is to find a path of the robot given the various obstacles. The problem has attracted the attention of numerous researchers due to the associated complexities, uncertainties and real time nature. In this paper we propose a new algorithm for solving the problem of path planning in a static environment. The algorithm makes use of an algorithm developed earlier by the authors called Multi-Neuron Heuristic Search (MNHS). This algorithm is a modified A^@? algorithm that performs better than normal A^@? when heuristics are prone to sharp changes. This algorithm has been implemented in a hierarchical manner, where each generation of the algorithm gives a more detailed path that has a higher reaching probability. The map used for this purpose is based on a probabilistic approach where we measure the probability of collision with obstacle while traveling inside the cell. As we decompose the cells, the cell size reduces and the probability starts to touch 0 or 1 depending upon the presence or absence of obstacles in the cell. In this approach, it is not compulsory to run the entire algorithm. We may rather break after a certain degree of certainty has been achieved. We tested the algorithm in numerous situations with varying degrees of complexities. The algorithm was able to give an optimal path in all the situations given. The standard A^@? algorithm failed to give results within time in most of the situations presented.
ieee international advance computing conference | 2009
Rahul Kala; Anupam Shulkla; Ritu Tiwari
Artificial Neural Networks have found a variety of applications that cover almost every domain. The increasing use of Artificial Neural Networks and machine learning has led to a huge amount of research and making in of large data sets that are used for training purposes. Handwriting recognition, speech recognition, speaker recognition, face recognition are some of the varied areas of applications of artificial neural networks. The larger training data sets are a big boon to these systems as the performance gets better and better with the increase in data sets. The higher training data set although drastically increases the training time. Also it is possible that the artificial neural network does not train at all with the large data sets. This paper proposes a novel concept of dealing with these scenarios. The paper proposes the use of a hierarchical model where the training data set is first clustered into clusters. Each cluster has its own neural network. When an unknown input is given to the system, the system first finds out the cluster to which the input belongs. Then the input is processed by the individual neural network of that system. The general structure of the algorithm is similar to a hybrid system consisting of fuzzy logic and artificial neural network being applied one after the other. The system has huge applications in all the areas where Artificial Neural Network is being used extensively.
Cybernetics and Systems | 2010
Rahul Kala; Anupam Shukla; Ritu Tiwari
The problem of path planning deals with the computation of an optimal path of the robot, from source to destination, such that it does not collide with any obstacle on its path. In this article we solve the problem of path planning separately in two hierarchies. The coarser hierarchy finds the path in a static environment consisting of the entire robotic map. The resolution of the map is reduced for computational speedup. The finer hierarchy takes a section of the map and computes the path for both static and dynamic environments. Both the hierarchies make use of an evolutionary algorithm for planning. Both these hierarchies optimize as the robot travels in the map. The static environment path is increasingly optimized along with generations. Hence, an extra setup cost is not required like other evolutionary approaches. The finer hierarchy makes the robot easily escape from the moving obstacle, almost following the path shown by the coarser hierarchy. This hierarchy extrapolates the movements of the various objects by assuming them to be moving with same speed and direction. Experimentation was done in a variety of scenarios with static and mobile obstacles. In all cases the robot could optimally reach the goal. Further, the robot was able to escape from the sudden occurrence of obstacles.
ieee international advance computing conference | 2009
Anupam Shukla; Ritu Tiwari; Prabhdeep Kaur; Rekh Ram Janghel
A major problem in medical science is attaining the correct diagnosis of disease in precedence of its treatment. This paper presents the diagnosis of thyroid disorders using Artificial Neural Networks (ANNs). The feed-forward neural network has been trained using three ANN algorithms; the Back propagation algorithm (BPA), the Radial Basis Function (RBF) Networks and the Learning Vector Quantization (LVQ) Networks. The networks are simulated using MATLAB and their performance is assessed in terms of factors like accuracy of diagnosis and training time. The performance comparison helps to find out the best model for diagnosis of thyroid disorders.
Applied Soft Computing | 2017
Shimpi Singh Jadon; Ritu Tiwari; Harish Sharma; Jagdish Chand Bansal
Abstract Artificial Bee Colony (ABC) and Differential Evolution (DE) are two very popular and efficient meta-heuristic algorithms. However, both algorithms have been applied to various science and engineering optimization problems, extensively, the algorithms suffer from premature convergence, unbalanced exploration-exploitation, and sometimes slow convergence speed. Hybridization of ABC and DE may provide a platform for developing a meta-heuristic algorithm with better convergence speed and a better balance between exploration and exploitation capabilities. This paper proposes a hybridization of ABC and DE algorithms to develop a more efficient meta-heuristic algorithm than ABC and DE. In the proposed hybrid algorithm, Hybrid Artificial Bee Colony with Differential Evolution (HABCDE), the onlooker bee phase of ABC is inspired from DE. Employed bee phase is modified by employing the concept of the best individual while scout bee phase has also been modified for higher exploration. The proposed HABCDE has been tested over 20 test problems and 4 real-world optimization problems. The performance of HABCDE is compared with the basic version of ABC and DE. The results are also compared with state-of-the-art algorithms, namely Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Particle Swarm Optimization (PSO), Biogeography Based Optimization (BBO) and Spider Monkey Optimization (SMO) to establish the superiority of the proposed algorithm. For further validation of the proposed hybridization, the experimental results are also compared with other hybrid versions of ABC and DE, namely ABC-DE, DE-BCO and HDABCA and with modified ABC algorithms, namely Best-So-Far ABC (BSFABC), Gbest guided ABC (GABC) and modified ABC (MABC). Results indicate that HABCDE would be a competitive algorithm in the field of meta-heuristics.
international conference on information sciences and interaction sciences | 2010
Rekh Ram Janghel; Anupam Shukla; Ritu Tiwari; Rahul Kala
Breast cancer is the second leading cause of cancer deaths worldwide and occurrs in one out of eight women. In this paper we develop a system for diagnosis, prognosis and prediction of breast cancer using Artificial Neural Network (ANN) models. This will assist the doctors in diagnosis of the disease. We implement four models of neural networks namely Back Propagation Algorithm, Radial Basis Function Networks, Learning vector Quantization and Competitive Learning Network Experimental results show that Learning Vector Quantization shows the best performance in the testing data set This is followed in order by CL, MLP and RBFN The high accuracy of the LVQ against the other models indicates its better ability for solving the classificatory problem of Breast Cancer diagnosis.
Archive | 2012
Ritu Tiwari; Anupam Shukla; Rahul Kala
Robotics is an ever-expanding field and intelligent planning continues to play a major role. Given that the intention of mobile robots is to carry out tasks independent from human aid, robot intelligence is needed to make and plan out decisions based on various sensors. Planning is the fundamental activity that implements this intelligence into the mobile robots to complete such tasks. Understanding problems, challenges, and solutions to path planning and how it fits in is important to the realm of robotics.Intelligent Planning for Mobile Robotics: Algorithmic Approaches presents content coverage on the basics of artificial intelligence, search problems, and soft computing approaches. This collection of research provides insight on both robotics and basic algorithms and could serve as a reference book for courses related to robotics, special topics in AI, planning, applied soft computing, applied AI, and applied evolutionary computing. It is an ideal choice for research students, scholars, and professors alike.
ieee international advance computing conference | 2009
Anupam Shukla; Ritu Tiwari; Prabhdeep Kaur
This paper presents a novel approach to simulate a Knowledge Based System for diagnosis of Breast Cancer using Soft Computing tools like Artificial Neural Networks (ANNs) and Neuro Fuzzy Systems. The feed-forward neural network has been trained using three ANN algorithms, the Back propagation algorithm (BPA), the Radial Basis Function (RBF) Networks and the Learning Vector Quantization (LVQ) Networks; and also by Adaptive Neuro Fuzzy Inference System (ANFIS). The simulator has been developed using MATLAB and performance is compared by considering the metrics like accuracy of diagnosis, training time, number of neurons, number of epochs etc. The simulation results show that this Knowledge Based Approach can be effectively used for early detection of Breast Cancer to help oncologists to enhance the survival rates significantly.
Collaboration
Dive into the Ritu Tiwari's collaboration.
Indian Institute of Information Technology and Management
View shared research outputsIndian Institute of Information Technology and Management
View shared research outputsIndian Institute of Information Technology and Management
View shared research outputsIndian Institute of Information Technology and Management
View shared research outputs