Rituparna Biswas
University of Calcutta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rituparna Biswas.
Inorganic Chemistry | 2012
Rituparna Biswas; Sandip Mukherjee; Paramita Kar; Ashutosh Ghosh
The reaction of a tridentate Schiff base ligand HL (2-[(3-dimethylaminopropylimino)-methyl]-phenol) with Ni(II) acetate or perchlorate salts in the presence of azide as coligand has led to two new Ni(II) complexes of formulas [Ni(3)L(2)(OAc)(2)(μ(1,1)-N(3))(2)(H(2)O)(2)]·2H(2)O (1) and [Ni(2)L(2)(μ(1,1)-N(3))(μ(1,3)-N(3))](n)(2). Single crystal X-ray structures show that complex 1 is a linear trinuclear Ni(II) compound containing a μ(2)-phenoxido, an end-on (EO) azido and a syn-syn acetato bridge between the terminal and the central Ni(II) ions. Complex 2 can be viewed as a one-dimensional (1D) chain in which the triply bridged (di-μ(2)-phenoxido and EO azido) dimeric Ni(2) units are linked to each other in a zigzag pattern by a single end-to-end (EE) azido bridge. Variable-temperature magnetic susceptibility studies indicate the presence of moderate ferromagnetic exchange coupling in complex 1 with J value of 16.51(6) cm(-1). The magnetic behavior of 2 can be fitted in an alternating ferro- and antiferromagnetic model [J(FM) = +34.2(2.8) cm(-1) and J(AF) = -21.6(1.1) cm(-1)] corresponding to the triple bridged dinuclear core and EE azido bridge respectively. Density functional theory (DFT) calculations were performed to corroborate the magnetic results of 1 and 2. The contributions of the different bridges toward magnetic interactions in both compounds have also been calculated.
Dalton Transactions | 2011
Rituparna Biswas; Paramita Kar; You Song; Ashutosh Ghosh
Two new nickel(II) complexes [Ni(2)L(2)(PhCOO)(2)(H(2)O)] (1), [Ni(2)L(2)(PhCH(2)COO)(2)(H(2)O)] (2) have been synthesized using a tridentate Schiff base ligand, HL (2-[(3-dimethylamino-propylimino)-methyl]-phenol) and the carboxylate monoanions, benzoate and phenylacetate, respectively. The complexes have been characterized by spectral analysis, variable temperature magnetic susceptibility measurement and crystal structure analysis. The structural analyses reveal that both complexes are dinuclear in which the distorted octahedral Ni(2+) ions share a face, bridged by one water molecule and two μ(2)-phenoxo oxygen atoms. A monodentate benzoate or phenylacetate anion and two nitrogen atoms of the chelating deprotonated Schiff base (L) complete the hexa-coordination around the metal ion. Variable-temperature magnetic susceptibility studies indicate the presence of dominant ferromagnetic exchange coupling in complexes 1 and 2 with J values of 11.1(2) and 10.9(2) cm(-1) respectively. An attempt has been made to rationalize the observed magneto-structural behavior considering the importance of the additional water bridge in the present two complexes and also in other similar species.
Chemistry: A European Journal | 2013
Rituparna Biswas; Yumi Ida; Michael L. Baker; Saptarshi Biswas; Paramita Kar; Hiroyuki Nojiri; Takayuki Ishida; Ashutosh Ghosh
Three new trinuclear nickel (II) complexes with the general composition [Ni3 L3 (OH)(X)](ClO4 ) have been prepared in which X=Cl(-) (1), OCN(-) (2), or N3(-) (3) and HL is the tridentate N,N,O donor Schiff base ligand 2-[(3-dimethylaminopropylimino)methyl]phenol. Single-crystal structural analyses revealed that all three complexes have a similar Ni3 core motif with three different types of bridging, namely phenoxido (μ2 and μ3 ), hydroxido (μ3 ), and μ2 -Cl (1), μ1,1 -NCO (2), or μ1,1 -N3 (3). The nickel(II) ions adopt a compressed octahedron geometry. Single-crystal magnetization measurements on complex 1 revealed that the pseudo-three-fold axis of Ni3 corresponds to a magnetic easy axis, being consistent with the magnetic anisotropy expected from the coordination structure of each nickel ion. Temperature-dependent magnetic measurements indicated ferromagnetic coupling leading to an S=3 ground state with 2J/k=17, 17, and 28 K for 1, 2, and 3, respectively, with the nickel atoms in an approximate equilateral triangle. The high-frequency EPR spectra in combination with spin Hamiltonian simulations that include zero-field splitting parameters DNi /k=-5, -4, and -4 K for 1, 2, and 3, respectively, reproduced the EPR spectra well after a anisotropic exchange term was introduced. Anisotropic exchange was identified as Di,j /k=-0.9, -0.8, and -0.8 K for 1, 2, and 3, respectively, whereas no evidence of single-ion rhombic anisotropy was observed spectroscopically. Slow relaxation of the magnetization at low temperatures is evident from the frequency-dependence of the out-of-phase ac susceptibilities. Pulsed-field magnetization recorded at 0.5 K shows clear steps in the hysteresis loop at 0.5-1 T, which has been assigned to quantum tunneling, and is characteristic of single-molecule magnets.
Crystal Growth & Design | 2011
Paramita Kar; Rituparna Biswas; Yumi Ida; Takayuki Ishida; Ashutosh Ghosh
Dalton Transactions | 2011
Paramita Kar; Rituparna Biswas; Michael G. B. Drew; Yumi Ida; Takayuki Ishida; Ashutosh Ghosh
European Journal of Inorganic Chemistry | 2012
Rituparna Biswas; Sanjib Giri; Shyamal K. Saha; Ashutosh Ghosh
Inorganic Chemistry | 2012
Paramita Kar; Rituparna Biswas; Michael G. B. Drew; Antonio Frontera; Ashutosh Ghosh
European Journal of Inorganic Chemistry | 2011
Rituparna Biswas; Michael G. B. Drew; Carolina Estarellas; Antonio Frontera; Ashutosh Ghosh
Dalton Transactions | 2014
Rituparna Biswas; Carmen Diaz; Antonio Bauzá; Miquel Barceló-Oliver; Antonio Frontera; Ashutosh Ghosh
Polyhedron | 2011
Sanjib Giri; Rituparna Biswas; Ashutosh Ghosh; Shyamal K. Saha