Rob A. Cairns
University Health Network
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rob A. Cairns.
Nature Reviews Cancer | 2011
Rob A. Cairns; Isaac S. Harris
Interest in the topic of tumour metabolism has waxed and waned over the past century of cancer research. The early observations of Warburg and his contemporaries established that there are fundamental differences in the central metabolic pathways operating in malignant tissue. However, the initial hypotheses that were based on these observations proved inadequate to explain tumorigenesis, and the oncogene revolution pushed tumour metabolism to the margins of cancer research. In recent years, interest has been renewed as it has become clear that many of the signalling pathways that are affected by genetic mutations and the tumour microenvironment have a profound effect on core metabolism, making this topic once again one of the most intense areas of research in cancer biology.
Journal of Experimental Medicine | 2010
Stefan Gross; Rob A. Cairns; Mark D. Minden; Edward M. Driggers; Mark A. Bittinger; Hyun Gyung Jang; Masato Sasaki; Shengfang Jin; David P. Schenkein; Shinsan M. Su; Lenny Dang; Valeria Fantin; Tak W. Mak
Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), are present in most gliomas and secondary glioblastomas, but are rare in other neoplasms. IDH1/2 mutations are heterozygous, and affect a single arginine residue. Recently, IDH1 mutations were identified in 8% of acute myelogenous leukemia (AML) patients. A glioma study revealed that IDH1 mutations cause a gain-of-function, resulting in the production and accumulation of 2-hydroxyglutarate (2-HG). Genotyping of 145 AML biopsies identified 11 IDH1 R132 mutant samples. Liquid chromatography-mass spectrometry metabolite screening revealed increased 2-HG levels in IDH1 R132 mutant cells and sera, and uncovered two IDH2 R172K mutations. IDH1/2 mutations were associated with normal karyotypes. Recombinant IDH1 R132C and IDH2 R172K proteins catalyze the novel nicotinamide adenine dinucleotide phosphate (NADPH)–dependent reduction of α-ketoglutarate (α-KG) to 2-HG. The IDH1 R132C mutation commonly found in AML reduces the affinity for isocitrate, and increases the affinity for NADPH and α-KG. This prevents the oxidative decarboxylation of isocitrate to α-KG, and facilitates the conversion of α-KG to 2-HG. IDH1/2 mutations confer an enzymatic gain of function that dramatically increases 2-HG in AML. This provides an explanation for the heterozygous acquisition of these mutations during tumorigenesis. 2-HG is a tractable metabolic biomarker of mutant IDH1/2 enzyme activity.
Blood | 2012
Rob A. Cairns; Javeed Iqbal; François Lemonnier; Can Kucuk; Laurence de Leval; Jean Philippe Jais; Marie Parrens; Antoine Martin; Luc Xerri; Pierre Brousset; Li Chong Chan; Wing C. Chan; Philippe Gaulard; Tak W. Mak
Mutations in isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) occur in most grade 2 and 3 gliomas, secondary glioblastomas, and a subset of acute myelogenous leukemias but have not been detected in other tumor types. The mutations occur at specific arginine residues and result in the acquisition of a novel enzymatic activity that converts 2-oxoglutarate to D-2-hydroxyglutarate. This study reports IDH1 and IDH2 genotyping results from a set of lymphomas, which included a large set of peripheral T-cell lymphomas. IDH2 mutations were identified in approximately 20% of angioimmunoblastic T-cell lymphomas (AITLs), but not in other peripheral T-cell lymphoma entities. These results were confirmed in an independent set of AITL patients, where the IDH2 mutation rate was approximately 45%. This is the second common genetic lesion identified in AITL after TET2 and extends the number of neoplastic diseases where IDH1 and IDH2 mutations may play a role.
Blood | 2012
François Lemonnier; Lucile Couronné; Marie Parrens; Jean-Philippe Jais; Marion Travert; Laurence Lamant; Olivier Tournillac; Thérèse Rousset; Bettina Fabiani; Rob A. Cairns; Tak W. Mak; Christian Bastard; Olivier A. Bernard; Laurence de Leval; Philippe Gaulard
Inactivating mutations of the Ten-Eleven Translocation 2 (TET2) gene were first identified in myeloid malignancies and more recently in peripheral T-cell lymphomas (PTCLs). In the present study, we investigated the presence of TET2 coding sequence mutations and their clinical relevance in a large cohort of 190 PTCL patients. TET2 mutations were identified in 40 of 86 (47%) cases of angioimmunoblastic T-cell lymphoma (AITL) and in 22 of 58 (38%) cases of peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS), but were absent in all other PTCL entities, with the exception of 2 of 10 cases of enteropathy-associated T-cell lymphoma. Among PTCL-NOS, a heterogeneous group of lymphoma-comprising cases likely to derive from Th follicular (T(FH)) cells similarly to AITL, TET2 mutations were more frequent when PTCL-NOS expressed T(FH) markers and/or had features reminiscent of AITL (58% vs 24%, P = .01). In the AITL and PTCL-NOS subgroups, TET2 mutations were associated with advanced-stage disease, thrombocytopenia, high International Prognostic Index scores, and a shorter progression-free survival.
Cancer Research | 2004
Rob A. Cairns; Richard P. Hill
An orthotopic mouse model of cervical carcinoma has been used to investigate the relationship between acute (cyclic) hypoxia and spontaneous lymph node metastasis in vivo. The human cervical carcinoma cell line ME-180 was stably transfected to express the fluorescent protein DsRed2, which allowed the in vivo optical monitoring of tumor growth and metastasis by fluorescent microscopy. The surgically implanted primary tumors metastasize initially to local lymph nodes and later to lung, a pattern consistent with the clinical course of the disease. The effect of acute hypoxia on the growth and spread of these tumors was examined by exposing tumor-bearing mice to treatment consisting of exposure to 12 cycles of 10 min 7% O2 followed by 10 min air (total 4 h) daily during tumor growth. After 21 days, the tumors were excised, lymph node and lung metastases were quantified, and the hypoxic fraction and relative vascular area of the primary tumors were assessed by immunohistochemical staining for the hypoxic marker drug EF5 [2-(2-nitro-1H-imidazole-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide] and the vascular marker CD31, respectively. In untreated mice, the primary tumor size was directly correlated with lymph node metastatic burden. The acute hypoxia treatment resulted in a significant decrease in the size of the primary tumors at the time of excision. However, the mice in the acute hypoxia group had an increased number of positive lymph nodes (2–4) as compared with control mice (1–3). Lung metastasis was not affected. The acute hypoxia treatment also decreased the relative vascular area in the primary tumors but did not affect the hypoxic fraction. These results suggest that fluctuating oxygenation in cervical carcinoma tumors may reduce tumor growth rate, but it may also enhance the ability of tumor cells to metastasize to local lymph nodes.
Genes & Development | 2012
Masato Sasaki; Christiane B. Knobbe; Momoe Itsumi; Andrew J. Elia; Isaac S. Harris; Iok In Christine Chio; Rob A. Cairns; Susan McCracken; Andrew Wakeham; Jillian Haight; Annick You Ten; Bryan E. Snow; Takeshi Ueda; Satoshi Inoue; Kazuo Yamamoto; Myunggon Ko; Anjana Rao; Katharine E. Yen; Shinsan M. Su; Tak W. Mak
Isocitrate dehydrogenase-1 (IDH1) R132 mutations occur in glioma, but their physiological significance is unknown. Here we describe the generation and characterization of brain-specific Idh1 R132H conditional knock-in (KI) mice. Idh1 mutation results in hemorrhage and perinatal lethality. Surprisingly, intracellular reactive oxygen species (ROS) are attenuated in Idh1-KI brain cells despite an apparent increase in the NADP(+)/NADPH ratio. Idh1-KI cells also show high levels of D-2-hydroxyglutarate (D2HG) that are associated with inhibited prolyl-hydroxylation of hypoxia-inducible transcription factor-1α (Hif1α) and up-regulated Hif1α target gene transcription. Intriguingly, D2HG also blocks prolyl-hydroxylation of collagen, causing a defect in collagen protein maturation. An endoplasmic reticulum (ER) stress response induced by the accumulation of immature collagens may account for the embryonic lethality of these mutants. Importantly, D2HG-mediated impairment of collagen maturation also led to basement membrane (BM) aberrations that could play a part in glioma progression. Our study presents strong in vivo evidence that the D2HG produced by the mutant Idh1 enzyme is responsible for the above effects.
Cancer Cell | 2016
Satoshi Inoue; Wanda Y. Li; Isabel Beerman; Andrew J. Elia; Sean C. Bendall; François Lemonnier; Ken Kron; David W. Cescon; Zhenyue Hao; Evan F. Lind; Naoya Takayama; Aline C. Planello; Shu Yi Shen; Alan H. Shih; Dana M. Larsen; Qinxi Li; Bryan E. Snow; Andrew Wakeham; Jillian Haight; Chiara Gorrini; Christian Bassi; Kelsie L. Thu; Kiichi Murakami; Alisha R. Elford; Takeshi Ueda; Kimberly Straley; Katharine E. Yen; Gerry Melino; Luisa Cimmino; Iannis Aifantis
Mutations in the isocitrate dehydrogenase-1 gene (IDH1) are common drivers of acute myeloid leukemia (AML) but their mechanism is not fully understood. It is thought that IDH1 mutants act by inhibiting TET2 to alter DNA methylation, but there are significant unexplained clinical differences between IDH1- and TET2-mutant diseases. We have discovered that mice expressing endogenous mutant IDH1 have reduced numbers of hematopoietic stem cells (HSCs), in contrast to Tet2 knockout (TET2-KO) mice. Mutant IDH1 downregulates the DNA damage (DD) sensor ATM by altering histone methylation, leading to impaired DNA repair, increased sensitivity to DD, and reduced HSC self-renewal, independent of TET2. ATM expression is also decreased in human IDH1-mutated AML. These findings may have implications for treatment of IDH-mutant leukemia.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Makoto Hirata; Masato Sasaki; Rob A. Cairns; Satoshi Inoue; Vijitha Puviindran; Wanda Y. Li; Bryan E. Snow; Lisa D. Jones; Qingxia Wei; Shingo Sato; Yuning J. Tang; Puviindran Nadesan; Jason S. Rockel; Heather Whetstone; Raymond Poon; Angela Weng; Stefan Gross; Kimberly Straley; Camelia Gliser; Yingxia Xu; Jay S. Wunder; Tak W. Mak; Benjamin A. Alman
Significance Current genomic and biochemical analysis revealed mutations in isocitrate dehydrogenase (IDH) genes associated with several neoplasms and a novel enzymatic activity of IDH mutations to catalyze α-ketoglutarate to d-2-hydroxyglutarate, contributing to tumorigenesis. We identified a broad range of IDH1 mutations, including a previously unidentified IDH1-R132Q mutation, in cartilage tumors. Cartilage-specific Col2a1-Cre/ERT2;Idh1-R132 mutant knock-in mice developed multiple enchondroma-like lesions. These data show that mutant Idh in growth-plate cells causes persistence of chondrocytes, giving rise to enchondromas adjacent to the growth cartilage in bone. Enchondromas are benign cartilage tumors and precursors to malignant chondrosarcomas. Somatic mutations in the isocitrate dehydrogenase genes (IDH1 and IDH2) are present in the majority of these tumor types. How these mutations cause enchondromas is unclear. Here, we identified the spectrum of IDH mutations in human enchondromas and chondrosarcomas and studied their effects in mice. A broad range of mutations was identified, including the previously unreported IDH1-R132Q mutation. These mutations harbored enzymatic activity to catalyze α-ketoglutarate to d-2-hydroxyglutarate (d-2HG). Mice expressing Idh1-R132Q in one allele in cells expressing type 2 collagen showed a disordered growth plate, with persistence of type X-expressing chondrocytes. Chondrocyte cell cultures from these animals or controls showed that there was an increase in proliferation and expression of genes characteristic of hypertrophic chondrocytes with expression of Idh1-R132Q or 2HG treatment. Col2a1-Cre;Idh1-R132Q mutant knock-in mice (mutant allele expressed in chondrocytes) did not survive after the neonatal stage. Col2a1-Cre/ERT2;Idh1-R132 mutant conditional knock-in mice, in which Cre was induced by tamoxifen after weaning, developed multiple enchondroma-like lesions. Taken together, these data show that mutant IDH or d-2HG causes persistence of chondrocytes, giving rise to rests of growth-plate cells that persist in the bone as enchondromas.
Nature Reviews Cancer | 2016
Rob A. Cairns; Tak W. Mak
The study of cancer metabolism has grown exponentially over the past decade. Although the initial observations by Otto Warburg and his contemporaries during the early twentieth century strongly suggested that core cellular metabolism was altered during the process of malignant transformation, the oncogene revolution and the rise of genetic technology in the latter half of the century shifted the focus of research in cancer biology towards the specific mutations and alterations in signalling pathways responsible for tumorigenesis. However, discoveries during the past two decades, and the successful clinical implementation of imaging approaches based on the metabolic phenotype of some tumours have once again highlighted that changes to metabolic processes are required for cells to escape from their defined roles as integrated parts of a tissue and organ system, and become an independent clone of cells that manifests itself as malignant disease.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Jing Ye; Yu Gu; Feng Zhang; Yuanlin Zhao; Yuan Yuan; Zhenyue Hao; Yi Sheng; Wanda Y. Li; Andrew Wakeham; Rob A. Cairns; Tak W. Mak
Significance Isocitrate dehydrogenase 1 (IDH1) is abundant in liver. Although it was reported that IDH1 participates in lipid biosynthesis, we show here that IDH1 is instead critical for hepatic amino acid (AA) utilization. IDH1 catalyzes the generation of cytosolic α-ketoglutarate, which can be converted to glutamate in the liver via transamination. Both IDH1-null liver and IDH1-deficient HepG2 cells show defects in AA utilization. Because IDH1 mutations occur in various tumors and AA metabolism is critical for tumor cell growth, our elucidation of the functions of wild-type IDH1 in AA utilization should advance our understanding of how mutant IDH promotes malignancy. Although the enzymatic activity of isocitrate dehydrogenase 1 (IDH1) was defined decades ago, its functions in vivo are not yet fully understood. Cytosolic IDH1 converts isocitrate to α-ketoglutarate (α-KG), a key metabolite regulating nitrogen homeostasis in catabolic pathways. It was thought that IDH1 might enhance lipid biosynthesis in liver or adipose tissue by generating NADPH, but we show here that lipid contents are relatively unchanged in both IDH1-null mouse liver and IDH1-deficient HepG2 cells generated using the CRISPR-Cas9 system. Instead, we found that IDH1 is critical for liver amino acid (AA) utilization. Body weights of IDH1-null mice fed a high-protein diet (HPD) were abnormally low. After prolonged fasting, IDH1-null mice exhibited decreased blood glucose but elevated blood alanine and glycine compared with wild-type (WT) controls. Similarly, in IDH1-deficient HepG2 cells, glucose consumption was increased, but alanine utilization and levels of intracellular α-KG and glutamate were reduced. In IDH1-deficient primary hepatocytes, gluconeogenesis as well as production of ammonia and urea were decreased. In IDH1-deficient whole livers, expression levels of genes involved in AA metabolism were reduced, whereas those involved in gluconeogenesis were up-regulated. Thus, IDH1 is critical for AA utilization in vivo and its deficiency attenuates gluconeogenesis primarily by impairing α-KG–dependent transamination of glucogenic AAs such as alanine.