Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rob B. van der Luijt is active.

Publication


Featured researches published by Rob B. van der Luijt.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Molecular diagnosis of pituitary adenoma predisposition caused by aryl hydrocarbon receptor-interacting protein gene mutations

Marianthi Georgitsi; Anniina Raitila; Auli Karhu; Karoliina Tuppurainen; Markus J. Mäkinen; Outi Vierimaa; Ralf Paschke; Wolfgang Saeger; Rob B. van der Luijt; Timo Sane; Mercedes Robledo; Ernesto De Menis; Robert J. Weil; Anna Wasik; Grzegorz Zielinski; Olga Lucewicz; Jan Lubinski; Virpi Launonen; Pia Vahteristo; Lauri A. Aaltonen

Pituitary adenomas are common neoplasms of the anterior pituitary gland. Germ-line mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene cause pituitary adenoma predisposition (PAP), a recent discovery based on genetic studies in Northern Finland. In this population, a founder mutation explained a significant proportion of all acromegaly cases. Typically, PAP patients were of a young age at diagnosis but did not display a strong family history of pituitary adenomas. To evaluate the role of AIP in pituitary adenoma susceptibility in other populations and to gain insight into patient selection for molecular screening of the condition, we investigated the possible contribution of AIP mutations in pituitary tumorigenesis in patients from Europe and the United States. A total of 460 patients were investigated by AIP sequencing: young acromegaly patients, unselected acromegaly patients, unselected pituitary adenoma patients, and endocrine neoplasia-predisposition patients who were negative for MEN1 mutations. Nine AIP mutations were identified. Because many of the patients displayed no family history of pituitary adenomas, detection of the condition appears challenging. Feasibility of AIP immunohistochemistry (IHC) as a prescreening tool was tested in 50 adenomas: 12 AIP mutation-positive versus 38 mutation-negative pituitary tumors. AIP IHC staining levels proved to be a useful predictor of AIP status, with 75% sensitivity and 95% specificity for germ-line mutations. AIP contributes to PAP in all studied populations. AIP IHC, followed by genetic counseling and possible AIP mutation analysis in IHC-negative cases, a procedure similar to the diagnostics of the Lynch syndrome, appears feasible in identification of PAP.


Human Mutation | 2010

Genetic analysis of von Hippel-Lindau disease†

Morgan Nordstrom-O'Brien; Rob B. van der Luijt; Ellen van Rooijen; Ans van den Ouweland; Danielle Majoor-Krakauer; Martijn P. Lolkema; Aram S. A. van Brussel; Emile E. Voest; Rachel H. Giles

Mutations in the von Hippel‐Lindau (VHL) gene are responsible for VHL disease, congenital polycythemia, and are found in many sporadic tumor types as well. Reports of VHL mutations are dispersed throughout original articles and databases that have not been recently updated. We compiled a comprehensive mutation table of 1,548 germline and somatic VHL mutations, derived from this protein of only 213 amino acids. We describe detailed phenotype and gene mutation information for 945 VHL families, including 30 previously unpublished kindreds from The Netherlands (six novel mutations). These data represent the most extensive catalog of germline VHL mutations to date. We also review VHL disease, known and theorized pathogenesis of common VHL manifestations, and genotype–phenotype correlations. Analysis of all VHL families, excluding germline mutations resulting in congenital polycythemias, describes the spectrum of mutation types: 52% missense, 13% frameshift, 11% nonsense, 6% in‐frame deletions/insertions, 11% large/complete deletions, and 7% splice mutations. This easy‐to‐use compilation of VHL mutations is intended to facilitate research and function as a necessary adjunct for physicians when providing patient information. Hum Mutat 31:521–537, 2010.


Human Mutation | 1997

Molecular analysis of the APC gene in 105 Dutch kindreds with familial adenomatous polyposis: 67 germline mutations identified by DGGE, PTT, and southern analysis.

Rob B. van der Luijt; P. Meera Khan; Hans F. A. Vasen; Carli M. J. Tops; Inge van Leeuwen-Cornelisse; Juul T. Wijnen; Heleen M. van der Klift; Rob J. Plug; G. Griffioen; Riccardo Fodde

Germline mutations of the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP), an autosomal dominant predisposition to colorectal cancer. We screened the entire coding region of the APC gene for mutations in an unselected series of 105 Dutch FAP kindreds. For the analysis of exons 1–14, we employed the GC‐clamped denaturing gradient gel electrophoresis (DGGE), while the large exon 15 was examined using the protein truncation test. Using this approach, we identified 65 pathogenic mutations in the above 105 apparently unrelated FAP families. The mutations were predominantly either frameshifts (39/65) or single base substitutions (18/65), resulting in premature stop codons. Mutations that would predict abnormal RNA splicing were identified in seven cases. In one of the families, a nonconservative amino acid change was found to segregate with the disease. In spite of the large number of APC mutations reported to date, we identified 27 novel germline mutations in our patients, which reiterates the great heterogeneity of the mutation spectrum in FAP. In addition to the point mutations identified in our patients, structural rearrangements of APC were found in two pedigrees, by Southern blot analysis. The present study indicates that the combined use of DGGE, protein truncation test, and Southern blot analysis offers an efficient strategy for the presymptomatic diagnosis of FAP by direct mutation detection. We found that the combined use of the currently available molecular approaches still fails to identify the underlying genetic defect in a significant subset of the FAP families. The possible causes for this limitation are discussed.


Human Genetics | 1995

APC mutation in the alternatively spliced region of exon 9 associated with late onset familial adenomatous polyposis

Rob B. van der Luijt; Hans F. A. Vasen; Carli M. J. Tops; Cor Breukel; Riccardo Fodde; P. Meera Khan

Germ-line mutations in the adenomatous polyposis coli (APC) gene are responsible for familial adenomatous polyposis (FAP). Genotype-phenotype correlation studies in patients with FAP have demonstrated associations of certain variants of the disease with mutations at specific sites within the APC gene. In a large FAP family, we identified a frameshift mutation located in the alternatively spliced region of exon 9. Phenotypic studies of affected family members showed that the clinical course of FAP was delayed, with gastrointestinal symptoms and death from colorectal carcinoma occurring on average 25 and 20 years later than usual, respectively. The numbers of colorectal adenomas differed markedly among affected individuals and the location of colorectal cancer lay frequently in the proximal colon. Our findings suggest that the exon 9 mutation identified in the pedigree is associated with late onset of FAP. The atypical phenotype may be explained by the site of the mutation in the APC gene. Analysis of the APC protein product indicated that the exon 9 mutation did not result in a detectable truncated APC protein. Given the location of the mutation within an alternatively spliced exon of APC, it is conceivable that normal APC proteins are produced from the mutant allele by alternative splicing.


Genomics | 1992

Eight novel inactivating germ line mutations at the APC gene identified by denaturing gradient gel electrophoresis

Riccardo Fodde; Rob B. van der Luijt; Juul T. Wijnen; Carli M. J. Tops; Heleen M. van der Klift; Inge van Leeuwen-Cornelisse; G. Griffioen; Hans F. A. Vasen; P. Meera Khan

Familial adenomatous polyposis (FAP) is a dominantly inherited condition predisposing to colorectal cancer. The recent isolation of the responsible gene (adenomatous polyposis coli or APC) has facilitated the search for germ line mutations in affected individuals. Previous authors have used the RNase protection assay and the single-strand conformation polymorphisms procedure to screen for mutations. In this study we used denaturing gradient gel electrophoresis (DGGE). DGGE analysis of 10 APC exons (4, 5, 7, 8, 9, 10, 12, 13, 14, and part of 15) in 33 unrelated Dutch FAP patients has led to the identification of eight novel germ line mutations resulting in stop codons or frameshifts. The results reported here indicate that (1) familial adenomatous polyposis is caused by an extremely heterogeneous spectrum of point mutations; (2) all the mutations found in this study are chain terminating; and (3) DGGE represents a rapid and sensitive technique for the detection of mutations in the unusually large APC gene. An extension of the DGGE analysis to the entire coding region in a sufficient number of clinically well-characterized, unrelated patients will facilitate the establishment of genotype-phenotype correlations. On the other hand, the occurrence of an extremely heterogeneous spectrum of mutations spread throughout the entire length of the large APC gene among the FAP patients indicates that this approach may not be useful as a rapid presymptomatic diagnostic procedure in a routine laboratory. Nevertheless, the above DGGE approach has incidentally led to the identification of a common polymorphism in exon 13. Such intragenic polymorphisms offer a practical approach to a more rapid procedure for presymptomatic diagnosis of FAP by linkage analysis in informative families.


Laboratory Investigation | 2005

Rapid detection of VHL exon deletions using real-time quantitative PCR

Jasmien Hoebeeck; Rob B. van der Luijt; Bruce Poppe; Els De Smet; Nurten Yigit; Kathleen Claes; Richard Zewald; Gert-Jan de Jong; Anne De Paepe; Frank Speleman; Jo Vandesompele

Various types of mutations exist that exert an effect on the normal function of a gene. Among these, exon/gene deletions often remain unnoticed in initial mutation screening. Until recently, no fast and efficient methods were available to detect this type of mutation. Molecular detection methods for gene copy number changes included Southern blot (SB) and fluorescence in situ hybridisation, both with their own intrinsic limitations. In this paper, we report the development and application of a fast, sensitive and high-resolution method for the detection of single exon or larger deletions in the VHL gene based on real-time quantitative PCR (Q-PCR). These deletions account for approximately one-fifth of all patients with the von Hippel–Lindau syndrome, a dominantly inherited highly penetrant familial cancer syndrome predisposing to specific malignancies including phaeochromocytomas and haemangioblastomas. Our VHL exon quantification strategy is based on SYBR Green I detection and normalisation using two reference genes with a normal copy number, that is, ZNF80 (3q13.31) and GPR15 (3q12.1). Choice of primer sequences and the use of two reference genes appears to be critical for accurate discrimination between 1 and 2 exon copies. In a blind Q-PCR study of 29 samples, all 14 deletions were detected, which is in perfect agreement with previously determined SB results. We propose Q-PCR as the method of choice for fast (within 3.5 h), accurate and sensitive (ng amount of input DNA) exon deletion screening in routine DNA diagnosis of VHL disease. Similar assays can be designed for deletion screening in other genetic disorders.


Nature Biotechnology | 2014

Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping.

Paula J.P. de Vree; Elzo de Wit; Mehmet Yilmaz; Monique van de Heijning; Petra Klous; Marjon J.A.M. Verstegen; Yi Wan; Hans Teunissen; Peter Hugo Lodewijk Krijger; Geert Geeven; Paul P. Eijk; Daoud Sie; Bauke Ylstra; Lorette O M Hulsman; Marieke F. van Dooren; Laura J.C.M. van Zutven; Ans van den Ouweland; Sjef Verbeek; Ko Willems van Dijk; Marion Cornelissen; Atze T. Das; Ben Berkhout; Birgit Sikkema-Raddatz; Eva van den Berg; Pieter van der Vlies; Desiree Weening; Johan T. den Dunnen; Magdalena Matusiak; Mohamed Lamkanfi; Marjolijn J. L. Ligtenberg

Despite developments in targeted gene sequencing and whole-genome analysis techniques, the robust detection of all genetic variation, including structural variants, in and around genes of interest and in an allele-specific manner remains a challenge. Here we present targeted locus amplification (TLA), a strategy to selectively amplify and sequence entire genes on the basis of the crosslinking of physically proximal sequences. We show that, unlike other targeted re-sequencing methods, TLA works without detailed prior locus information, as one or a few primer pairs are sufficient for sequencing tens to hundreds of kilobases of surrounding DNA. This enables robust detection of single nucleotide variants, structural variants and gene fusions in clinically relevant genes, including BRCA1 and BRCA2, and enables haplotyping. We show that TLA can also be used to uncover insertion sites and sequences of integrated transgenes and viruses. TLA therefore promises to be a useful method in genetic research and diagnostics when comprehensive or allele-specific genetic information is needed.


Breast Cancer Research | 2009

A method to assess the clinical significance of unclassified variants in the BRCA1 and BRCA2 genes based on cancer family history

Encarna Gomez Garcia; Jan C. Oosterwijk; Maarten Timmermans; Christi J. van Asperen; Frans B. L. Hogervorst; Nicoline Hoogerbrugge; Rogier A. Oldenburg; Senno Verhoef; Charlotte J. Dommering; Margreet G. E. M. Ausems; Theo A. van Os; Annemarie H. van der Hout; Marjolijn J. L. Ligtenberg; Ans van den Ouweland; Rob B. van der Luijt; Juul T. Wijnen; Jan J. P. Gille; Patrick J. Lindsey; P. Devilee; Marinus J. Blok; Maaike P. G. Vreeswijk

IntroductionUnclassified variants (UVs) in the BRCA1/BRCA2 genes are a frequent problem in counseling breast cancer and/or ovarian cancer families. Information about cancer family history is usually available, but has rarely been used to evaluate UVs. The aim of the present study was to identify which is the best combination of clinical parameters that can predict whether a UV is deleterious, to be used for the classification of UVs.MethodsWe developed logistic regression models with the best combination of clinical features that distinguished a positive control of BRCA pathogenic variants (115 families) from a negative control population of BRCA variants initially classified as UVs and later considered neutral (38 families).ResultsThe models included a combination of BRCAPRO scores, Myriad scores, number of ovarian cancers in the family, the age at diagnosis, and the number of persons with ovarian tumors and/or breast tumors. The areas under the receiver operating characteristic curves were respectively 0.935 and 0.836 for the BRCA1 and BRCA2 models. For each model, the minimum receiver operating characteristic distance (respectively 90% and 78% specificity for BRCA1 and BRCA2) was chosen as the cutoff value to predict which UVs are deleterious from a study population of 12 UVs, present in 59 Dutch families. The p.S1655F, p.R1699W, and p.R1699Q variants in BRCA1 and the p.Y2660D, p.R2784Q, and p.R3052W variants in BRCA2 are classified as deleterious according to our models. The predictions of the p.L246V variant in BRCA1 and of the p.Y42C, p.E462G, p.R2888C, and p.R3052Q variants in BRCA2 are in agreement with published information of them being neutral. The p.R2784W variant in BRCA2 remains uncertain.ConclusionsThe present study shows that these developed models are useful to classify UVs in clinical genetic practice.


BMC Cancer | 2009

A simple method for co-segregation analysis to evaluate the pathogenicity of unclassified variants; BRCA1 and BRCA2 as an example

Leila Mohammadi; Maaike P.G. Vreeswijk; Rogier A. Oldenburg; Ans van den Ouweland; Jan C. Oosterwijk; Annemarie H. van der Hout; Nicoline Hoogerbrugge; Marjolijn J. L. Ligtenberg; Margreet G. E. M. Ausems; Rob B. van der Luijt; Charlotte J. Dommering; Johan J. P. Gille; Senno Verhoef; Frans B. L. Hogervorst; Theo A. van Os; Encarna Gomez Garcia; Marinus J. Blok; Juul T. Wijnen; Quinta Helmer; Peter Devilee; Christi J. van Asperen; Hans C. van Houwelingen

BackgroundAssessment of the clinical significance of unclassified variants (UVs) identified in BRCA1 and BRCA2 is very important for genetic counselling. The analysis of co-segregation of the variant with the disease in families is a powerful tool for the classification of these variants. Statistical methods have been described in literature but these methods are not always easy to apply in a diagnostic setting.MethodsWe have developed an easy to use method which calculates the likelihood ratio (LR) of an UV being deleterious, with penetrance as a function of age of onset, thereby avoiding the use of liability classes. The application of this algorithm is publicly available http://www.msbi.nl/cosegregation. It can easily be used in a diagnostic setting since it requires only information on gender, genotype, present age and/or age of onset for breast and/or ovarian cancer.ResultsWe have used the algorithm to calculate the likelihood ratio in favour of causality for 3 UVs in BRCA1 (p.M18T, p.S1655F and p.R1699Q) and 5 in BRCA2 (p.E462G p.Y2660D, p.R2784Q, p.R3052W and p.R3052Q). Likelihood ratios varied from 0.097 (BRCA2, p.E462G) to 230.69 (BRCA2, p.Y2660D). Typing distantly related individuals with extreme phenotypes (i.e. very early onset cancer or old healthy individuals) are most informative and give the strongest likelihood ratios for or against causality.ConclusionAlthough co-segregation analysis on itself is in most cases insufficient to prove pathogenicity of an UV, this method simplifies the use of co-segregation as one of the key features in a multifactorial approach considerably.


Journal of Medical Genetics | 2001

De novo recurrent germline mutation of the BRCA2 gene in a patient with early onset breast cancer

Rob B. van der Luijt; Patrick van Zon; Rumó P M Jansen; Carla J M van der Sijs-Bos; Carla C. Wárlám-Rodenhuis; Margreet G. E. M. Ausems

Germline mutations in either of the two major breast cancer predisposition genes, BRCA1 andBRCA2, account for a significant proportion of hereditary breast/ovarian cancer. Identification of breast cancer patients carrying mutations of these genes is primarily based on a positive family history of breast/ovarian cancer or early onset of the disease or both. In the course of mutation screening of theBRCA1 and BRCA2genes in a hospital based series of patients with risk factors for hereditary breast/ovarian cancer, we identified a germline mutation in the BRCA2 gene (3034del4) in a patient with early onset breast cancer and no strong family history of the disease. Subsequent molecular analysis in her parents showed that neither of them carried the mutation. Paternity was confirmed using a set of highly polymorphic markers, showing that the proband carried a de novo germline mutation in the BRCA2 gene. Interestingly, 3034del4 is a recurrent mutation occurring in a putative mutation prone region of the BRCA2 gene. Our study presents the first case in which a de novo germline mutation in the BRCA2 gene has been identified, and supports previous results of haplotype studies, confirming that the 3034del4 mutation has multiple independent origins.

Collaboration


Dive into the Rob B. van der Luijt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ans van den Ouweland

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Carli M. J. Tops

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Riccardo Fodde

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Senno Verhoef

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge