Rob Knight
University of Essex
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rob Knight.
ieee-ras international conference on humanoid robots | 2010
Hugo Gravato Marques; Michael Jäntsch; Steffen Wittmeier; Owen Holland; Cristiano Alessandro; Alan Diamond; Max Lungarella; Rob Knight
The human body was not designed by engineers and the way in which it is built poses enormous control problems. Its complexity challenges the ability of classical control theory to explain human movement as well as the development of human motor skills. It is our working hypothesis that the engineering paradigm for building robots places severe limitations on the kinds of interactions such robots can engage in, on the knowledge they can acquire of their environment, and therefore on the nature of their cognitive engagement with the environment. This paper describes the design of an anthropomimetic humanoid upper torso, ECCE1, built in the context of the ECCEROBOT project. The goal of the project is to use this platform to test hypotheses about human motion as well as to compare its performance with that of humans, whether at the mechanical, behavioural or cognitive level.
Artificial Life | 2013
Steffen Wittmeier; Cristiano Alessandro; Nenad Bascarevic; Konstantinos Dalamagkidis; David Devereux; Alan Diamond; Michael Jäntsch; Kosta Jovanovic; Rob Knight; Hugo Gravato Marques; Predrag Milosavljevic; Bhargav Mitra; Bratislav Svetozarevic; Veljko Potkonjak; Rolf Pfeifer; Alois Knoll; Owen Holland
Anthropomimetic robotics differs from conventional approaches by capitalizing on the replication of the inner structures of the human body, such as muscles, tendons, bones, and joints. Here we present our results of more than three years of research in constructing, simulating, and, most importantly, controlling anthropomimetic robots. We manufactured four physical torsos, each more complex than its predecessor, and developed the tools required to simulate their behavior. Furthermore, six different control approaches, inspired by classical control theory, machine learning, and neuroscience, were developed and evaluated via these simulations or in small-scale setups. While the obtained results are encouraging, we are aware that we have barely exploited the potential of the anthropomimetic design so far. But, with the tools developed, we are confident that this novel approach will contribute to our understanding of morphological computation and human motor control in the future.
Wittmeier, Steffen; Alessandro, Cristiano; Bascarevic, Nenad; Dalamagkidis, Konstantinos; Devereux, David; Diamond, Alan; Jäntsch, Michael; Jovanovic, Kosta; Knight, Rob; Marques, Hugo Gravato; Milosavljevic, Predrag; Mitra, Bhargav; Svetozarevic, Bratislav; Potkonjak, Veljko; Pfeifer, Rolf; Knoll, Alois; Holland, Owen (2013). Towards anthropomimetic robotics: Development, simulation, and control of a musculoskeletal torso. Artificial Life, 19(1):171-193. | 2013
Steffen Wittmeier; Cristiano Alessandro; Nenad Bascarevic; Konstantinos Dalamagkidis; David Devereux; Alan Diamond; Michael Jäntsch; Kosta Jovanovic; Rob Knight; Hugo Gravato Marques; Predrag Milosavljevic; Bhargav Mitra; Bratislav Svetozarevic; Veljko Potkonjak; Rolf Pfeifer; Alois Knoll; Owen Holland
Abstract Anthropomimetic robotics differs from conventional approaches by capitalizing on the replication of the inner structures of the human body, such as muscles, tendons, bones, and joints. Here we present our results of more than three years of research in constructing, simulating, and, most importantly, controlling anthropomimetic robots. We manufactured four physical torsos, each more complex than its predecessor, and developed the tools required to simulate their behavior. Furthermore, six different control approaches, inspired by classical control theory, machine learning, and neuroscience, have been developed and evaluated via these simulations or in small-scale setups. While the obtained results are encouraging, we are aware that we have barely exploited the potential of the anthropomimetic design so far. But, with the tools developed, we are confident that this novel approach will contribute to our understanding of morphological computation and human motor control in the future.
International Journal of Advanced Robotic Systems | 2012
Alan Diamond; Rob Knight; David Devereux; Owen Holland
An anthropomimetic robot is one that closely copies the mechanics of the human body by having a human-like jointed skeleton moved by compliant muscle-like actuators. This paper describes the progress achieved in building anthropomimetic torsos in two projects, CRONOS and ECCEROBOT. In each, the bones were hand-moulded in a thermoplastic and the muscles were implemented by DC motors shortening and extending elastic tendons. Anthropomimetic robots differ from conventionally engineered robots by having complex joints and compliant tendon driven actuation that can cross more than one joint. Taken together, these characteristics make the robots unsuitable for control by standard methods, and so the ability to model them is important for developing heuristic methods of control and also for providing forward models. The robots were modelled using physics-based techniques which enable the study of the generation of movements and also of interactions with arbitrary objects. The lightweight and compliant structure of the robots was found to be safe for human proximity and contact.
Archive | 2006
Owen Holland; Rob Knight
Archive | 2004
Jindong Liu; Ian Dukes; Rob Knight; Huosheng Hu
Archive | 2008
Hugo Gravato Marques; Rob Knight; Richard Newcombe; Owen Holland
Archive | 2007
Owen Holland; Rob Knight; Richard Newcombe
nVidia GPU Technology Conference, San Jose, CA | 2010
Alan Diamond; Owen Holland; Richard Newcombe; Rob Knight; Steffen Wittmeier; Michael Jäntsch
Journal of Vision | 2010
Tom Troscianko; Ben Vincent; Iain D. Gilchrist; Rob Knight; Owen Holland