Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rob Lavigne is active.

Publication


Featured researches published by Rob Lavigne.


Archives of Virology | 2009

Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2015)

M. J. Adams; Elliot J. Lefkowitz; Andrew M. Q. King; Dennis H. Bamford; Mya Breitbart; Andrew J. Davison; Said A. Ghabrial; Alexander E. Gorbalenya; Nick J. Knowles; Peter J. Krell; Rob Lavigne; David Prangishvili; Hélène Sanfaçon; Stuart G. Siddell; Peter Simmonds; Eric B. Carstens

Changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses in February 2015 are listed.


PLOS ONE | 2009

Quality-Controlled Small-Scale Production of a Well-Defined Bacteriophage Cocktail for Use in Human Clinical Trials

Maya Merabishvili; Jean-Paul Pirnay; Gilbert Verbeken; Nina Chanishvili; Marina Tediashvili; Nino Lashkhi; Thea Glonti; V. N. Krylov; Jan Mast; Luc Van Parys; Rob Lavigne; Guido Volckaert; Wesley Mattheus; Gunther Verween; Peter De Corte; Thomas Rose; Serge Jennes; Martin Zizi; Daniel De Vos; Mario Vaneechoutte

We describe the small-scale, laboratory-based, production and quality control of a cocktail, consisting of exclusively lytic bacteriophages, designed for the treatment of Pseudomonas aeruginosa and Staphylococcus aureus infections in burn wound patients. Based on succesive selection rounds three bacteriophages were retained from an initial pool of 82 P. aeruginosa and 8 S. aureus bacteriophages, specific for prevalent P. aeruginosa and S. aureus strains in the Burn Centre of the Queen Astrid Military Hospital in Brussels, Belgium. This cocktail, consisting of P. aeruginosa phages 14/1 (Myoviridae) and PNM (Podoviridae) and S. aureus phage ISP (Myoviridae) was produced and purified of endotoxin. Quality control included Stability (shelf life), determination of pyrogenicity, sterility and cytotoxicity, confirmation of the absence of temperate bacteriophages and transmission electron microscopy-based confirmation of the presence of the expected virion morphologic particles as well as of their specific interaction with the target bacteria. Bacteriophage genome and proteome analysis confirmed the lytic nature of the bacteriophages, the absence of toxin-coding genes and showed that the selected phages 14/1, PNM and ISP are close relatives of respectively F8, φKMV and phage G1. The bacteriophage cocktail is currently being evaluated in a pilot clinical study cleared by a leading Medical Ethical Committee.


Pharmaceutical Research | 2011

The Phage Therapy Paradigm: Prêt-à-Porter or Sur-mesure?

Jean-Paul Pirnay; Daniel De Vos; Gilbert Verbeken; Maia Merabishvili; Nina Chanishvili; Mario Vaneechoutte; Martin Zizi; Geert Laire; Rob Lavigne; Isabelle Huys; Guy Van den Mooter; Angus Buckling; Laurent Debarbieux; Flavie Pouillot; Joana Azeredo; Elisabeth Kutter; A. Dublanchet; Andrzej Górski; Revaz Adamia

The present opinion is the result of discussions on the future of phage therapy (personalized or large-scale uniform therapy?) during the first International Congress on Viruses of Microbes, held at the Institut Pasteur in Paris on June 21–25, 2010. Antibiotics are becoming ineffective as important bacterial pathogens evolve to outsmart them. Yet the antibiotic pipeline is running dry with only a few new antibacterial drugs expected to make it to the market in the foreseeable future. Bacteria that are resistant to all available antibacterial drugs, so-called superbugs, are emerging worldwide. Evolutionary ecology might inform practical attempts to bring these pathogens under stronger human control (1). In this context, various laboratories worldwide and a handful of small pharmaceutical companies are turning to (bacterio)phages (2). Phages are natural viruses that specifically infect bacteria. They are (among) the most abundant and ubiquitous lifelike entities on Earth and coevolve with their hosts, the bacteria. Lytic phages bind to receptors on the bacterial cell surface, inject their genetic material, use the bacterium’s reproductive machinery to replicate and subsequently destroy (lyse) the bacterium, irrespective of its resistance to antibiotics, releasing the newly formed phages to seek out new hosts. In 1919, d’Herelle used phages to treat dysentery in Paris, in what was probably the first attempt to use phages therapeutically. d’Herelle eventually developed a commercial laboratory in Paris that produced phage preparations against


Journal of Bacteriology | 2006

Genomic Analysis of Pseudomonas aeruginosa Phages LKD16 and LKA1: Establishment of the φKMV Subgroup within the T7 Supergroup

Pieter-Jan Ceyssens; Rob Lavigne; Wesley Mattheus; Andrew Chibeu; Kirsten Hertveldt; Jan Mast; Johan Robben; Guido Volckaert

Lytic Pseudomonas aeruginosa phages LKD16 and LKA1 were locally isolated and morphologically classified as Podoviridae. While LKD16 adsorbs weakly to its host, LKA1 shows efficient adsorption (ka = 3.9 x 10(-9) ml min(-1)). LKA1, however, displays a narrow host range on clinical P. aeruginosa strains compared to LKD16. Genome analysis of LKD16 (43,200 bp) and LKA1 (41,593 bp) revealed that both phages have linear double-stranded DNA genomes with direct terminal repeats of 428 and 298 bp and encode 54 and 56 genes, respectively. The majority of the predicted structural proteins were experimentally confirmed as part of the phage particle using mass spectrometry. Phage LKD16 is closely related to bacteriophage phiKMV (83% overall DNA homology), allowing a more thoughtful gene annotation of both genomes. In contrast, LKA1 is more distantly related, lacking significant DNA homology and showing protein similarity to phiKMV in 48% of its gene products. The early region of the LKA1 genome has diverged strongly from phiKMV and LKD16, and intriguing differences in tail fiber genes of LKD16 and LKA1 likely reflect the observed discrepancy in infection-related properties. Nonetheless, general genome organization is clearly conserved among phiKMV, LKD16, and LKA1. The three phages carry a single-subunit RNA polymerase gene adjacent to the structural genome region, a feature which distinguishes them from other members of the T7 supergroup. Therefore, we propose that phiKMV represents an independent and widespread group of lytic P. aeruginosa phages within the T7 supergroup.


Molecular Microbiology | 2007

Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages φKZ and EL

Yves Briers; Guido Volckaert; Anneleen Cornelissen; Stijn Lagaert; Christiaan Michiels; Kirsten Hertveldt; Rob Lavigne

Pseudomonas aeruginosa bacteriophage endolysins KZ144 (phage φKZ) and EL188 (phage EL) are highly lytic peptidoglycan hydrolases (210 000 and 390 000 units mg−1), active on a broad range of outer membrane‐permeabilized Gram‐negative species. Site‐directed mutagenesis indicates E115 (KZ144) and E155 (EL188) as their respective essential catalytic residues. Remarkably, both endolysins have a modular structure consisting of an N‐terminal substrate‐binding domain and a predicted C‐terminal catalytic module, a property previously only demonstrated in endolysins originating from phages infecting Gram‐positives and only in an inverse arrangement. Both binding domains contain conserved repeat sequences, consistent with those of some peptidoglycan hydrolases of Gram‐positive bacteria. Fusions of these domains with green fluorescent protein immediately label all outer membrane‐permeabilized Gram‐negative bacteria tested, isolated P. aeruginosa peptidoglycan and N‐acetylated Bacillus subtilis peptidoglycan, demonstrating the broad range of peptidoglycan‐binding capacity by these domains. Specifically, A1 chemotype peptidoglycan and fully N‐acetylated glucosamine units are essential for binding. Both KZ144 and EL188 appear to be a natural chimeric enzyme, originating from a recombination of a cell wall‐binding domain encoded by a Bacillus or Clostridium species and a catalytic domain of an unknown ancestor.


Mbio | 2014

Engineered Endolysin-Based “Artilysins” To Combat Multidrug-Resistant Gram-Negative Pathogens

Yves Briers; Maarten Walmagh; Victor Van Puyenbroeck; Anneleen Cornelissen; William Cenens; Abram Aertsen; Hugo Alexandre Mendes Oliveira; Joana Azeredo; Gunther Verween; Jean-Paul Pirnay; Stefan Miller; Guido Volckaert; Rob Lavigne

ABSTRACT The global threat to public health posed by emerging multidrug-resistant bacteria in the past few years necessitates the development of novel approaches to combat bacterial infections. Endolysins encoded by bacterial viruses (or phages) represent one promising avenue of investigation. These enzyme-based antibacterials efficiently kill Gram-positive bacteria upon contact by specific cell wall hydrolysis. However, a major hurdle in their exploitation as antibacterials against Gram-negative pathogens is the impermeable lipopolysaccharide layer surrounding their cell wall. Therefore, we developed and optimized an approach to engineer these enzymes as outer membrane-penetrating endolysins (Artilysins), rendering them highly bactericidal against Gram-negative pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Artilysins combining a polycationic nonapeptide and a modular endolysin are able to kill these (multidrug-resistant) strains in vitro with a 4 to 5 log reduction within 30 min. We show that the activity of Artilysins can be further enhanced by the presence of a linker of increasing length between the peptide and endolysin or by a combination of both polycationic and hydrophobic/amphipathic peptides. Time-lapse microscopy confirmed the mode of action of polycationic Artilysins, showing that they pass the outer membrane to degrade the peptidoglycan with subsequent cell lysis. Artilysins are effective in vitro (human keratinocytes) and in vivo (Caenorhabditis elegans). IMPORTANCE Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens. Bacterial resistance to most commonly used antibiotics is a major challenge of the 21st century. Infections that cannot be treated by first-line antibiotics lead to increasing morbidity and mortality, while millions of dollars are spent each year by health care systems in trying to control antibiotic-resistant bacteria and to prevent cross-transmission of resistance. Endolysins—enzymes derived from bacterial viruses—represent a completely novel, promising class of antibacterials based on cell wall hydrolysis. Specifically, they are active against Gram-positive species, which lack a protective outer membrane and which have a low probability of resistance development. We modified endolysins by protein engineering to create Artilysins that are able to pass the outer membrane and become active against Pseudomonas aeruginosa and Acinetobacter baumannii, two of the most hazardous drug-resistant Gram-negative pathogens.


PLOS ONE | 2011

The T7-Related Pseudomonas putida Phage φ15 Displays Virion-Associated Biofilm Degradation Properties

Anneleen Cornelissen; Pieter-Jan Ceyssens; Jeroen T'Syen; Helena Van Praet; Jean-Paul Noben; O. V. Shaburova; V. N. Krylov; Guido Volckaert; Rob Lavigne

Formation of a protected biofilm environment is recognized as one of the major causes of the increasing antibiotic resistance development and emphasizes the need to develop alternative antibacterial strategies, like phage therapy. This study investigates the in vitro degradation of single-species Pseudomonas putida biofilms, PpG1 and RD5PR2, by the novel phage ϕ15, a ‘T7-like virus’ with a virion-associated exopolysaccharide (EPS) depolymerase. Phage ϕ15 forms plaques surrounded by growing opaque halo zones, indicative for EPS degradation, on seven out of 53 P. putida strains. The absence of haloes on infection resistant strains suggests that the EPS probably act as a primary bacterial receptor for phage infection. Independent of bacterial strain or biofilm age, a time and dose dependent response of ϕ15-mediated biofilm degradation was observed with generally a maximum biofilm degradation 8 h after addition of the higher phage doses (104 and 106 pfu) and resistance development after 24 h. Biofilm age, an in vivo very variable parameter, reduced markedly phage-mediated degradation of PpG1 biofilms, while degradation of RD5PR2 biofilms and ϕ15 amplification were unaffected. Killing of the planktonic culture occurred in parallel with but was always more pronounced than biofilm degradation, accentuating the need for evaluating phages for therapeutic purposes in biofilm conditions. EPS degrading activity of recombinantly expressed viral tail spike was confirmed by capsule staining. These data suggests that the addition of high initial titers of specifically selected phages with a proper EPS depolymerase are crucial criteria in the development of phage therapy.


Current Protein & Peptide Science | 2012

Learning from Bacteriophages - Advantages and Limitations of Phage and Phage-Encoded Protein Applications

Zuzanna Drulis-Kawa; Grażyna Majkowska-Skrobek; Barbara Maciejewska; Anne-Sophie Delattre; Rob Lavigne

The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application.


Current Opinion in Biotechnology | 2011

Food applications of bacterial cell wall hydrolases

Lien Callewaert; Maarten Walmagh; Christiaan Michiels; Rob Lavigne

Bacterial cell wall hydrolases (BCWHs) display a remarkable structural and functional diversity that offers perspectives for novel food applications, reaching beyond those of the archetype BCWH and established biopreservative hen egg white lysozyme. Insights in BCWHs from bacteriophages to animals have provided concepts for tailoring BCWHs to target specific pathogens or spoilage bacteria, or, conversely, to expand their working range to Gram-negative bacteria. Genetically modified foods expressing BCWHs in situ showed successful, but face regulatory and ethical concerns. An interesting spin-off development is the use of cell wall binding domains of bacteriophage BCWHs for detection and removal of foodborne pathogens. Besides for improving food safety or stability, BCWHs may also find use as functional food ingredients with specific health effects.


Future Microbiology | 2010

Bacteriophages of Pseudomonas.

Pieter-Jan Ceyssens; Rob Lavigne

Pseudomonas species and their bacteriophages have been studied intensely since the beginning of the 20th century, due to their ubiquitous nature, and medical and ecological importance. Here, we summarize recent molecular research performed on Pseudomonas phages by reviewing findings on individual phage genera. While large phage collections are stored and characterized worldwide, the limits of their genomic diversity are becoming more and more apparent. Although this article emphasizes the biological background and molecular characteristics of these phages, special attention is given to emerging studies in coevolutionary and in therapeutic settings.

Collaboration


Dive into the Rob Lavigne's collaboration.

Top Co-Authors

Avatar

Guido Volckaert

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Pieter-Jan Ceyssens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Yves Briers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abram Aertsen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Kirsten Hertveldt

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Paul Pirnay

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Bob G. Blasdel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Wesley Mattheus

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge