Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rob Leurs is active.

Publication


Featured researches published by Rob Leurs.


Journal of Clinical Investigation | 1998

Histamine inhibits the production of interleukin-12 through interaction with H2 receptors.

T.C.T.M. van der Pouw Kraan; Anke H. Snijders; Leonie C. M. Boeije; E R de Groot; A. E. Alewijnse; Rob Leurs; Lucien A. Aarden

IL-12 is essential for T helper 1 (Th1) development and inhibits the induction of Th2 responses. Atopic diseases, which are characterized by Th2 responses, are associated with the overproduction of histamine. Here we present evidence that histamine, at physiological concentrations, strongly inhibits human IL-12 p40 and p70 mRNA and protein production by human monocytes. The use of specific histamine receptor antagonists reveals that this inhibition is mediated via the H2 receptor and induction of intracellular cAMP. The inhibition of IL-12 production is independent of IL-10 and IFN-gamma. The observation that histamine strongly reduces the production of the Th1-inducing cytokine IL-12 implies a positive feedback mechanism for the development of Th2 responses in atopic patients.


Neuropharmacology | 2008

Interactions between histamine H3 and dopamine D2 receptors and the implications for striatal function

Carla Ferrada; Sergi Ferré; Vicent Casadó; Antonio Cortés; Zuzana Justinova; Chanel Barnes; Enric I. Canela; Steven R. Goldberg; Rob Leurs; Carme Lluis; Rafael Franco

The striatum contains a high density of histamine H(3) receptors, but their role in striatal function is poorly understood. Previous studies have demonstrated antagonistic interactions between striatal H(3) and dopamine D(1) receptors at the biochemical level, while contradictory results have been reported about interactions between striatal H(3) and dopamine D(2) receptors. In this study, by using reserpinized mice, we demonstrate the existence of behaviorally significant antagonistic postsynaptic interactions between H(3) and D(1) and also between H(3) and dopamine D(2) receptors. The selective H(3) receptor agonist imetit inhibited, while the H(3) receptor antagonist thioperamide potentiated locomotor activation induced by either the D(1) receptor agonist SKF 38393 or the D(2) receptor agonist quinpirole. High scores of locomotor activity were obtained with H(3) receptor blockade plus D(1) and D(2) receptor co-activation, i.e., when thioperamide was co-administered with both SKF 38393 and quinpirole. Radioligand binding experiments in striatal membrane preparations showed the existence of a strong and selective H(3)-D(2) receptor interaction at the membrane level. In agonist/antagonist competition experiments, stimulation of H(3) receptors with several H(3) receptor agonists significantly decreased the affinity of D(2) receptors for the agonist. This kind of intramembrane receptor-receptor interactions are a common biochemical property of receptor heteromers. In fact, by using Bioluminescence Resonance Energy Transfer techniques in co-transfected HEK-293 cells, H(3) (but not H(4)) receptors were found to form heteromers with D(2) receptors. This study demonstrates an important role of postsynaptic H(3) receptors in the modulation of dopaminergic transmission by means of a negative modulation of D(2) receptor function.


British Journal of Pharmacology | 2009

Marked changes in signal transduction upon heteromerization of dopamine D1 and histamine H3 receptors

Carla Ferrada; Estefanía Moreno; Vicent Casadó; Gerold Bongers; Antoni Cortés; Josefa Mallol; Enric I. Canela; Rob Leurs; Sergi Ferré; Carme Lluis; Rafael Franco

Background and purpose:  Functional interactions between the G protein‐coupled dopamine D1 and histamine H3 receptors have been described in the brain. In the present study we investigated the existence of D1–H3 receptor heteromers and their biochemical characteristics.


Brain Research | 2000

Improgan, a cimetidine analog, induces morphine-like antinociception in opioid receptor-knockout mice.

Lindsay B. Hough; Julia W. Nalwalk; Y. Chen; A. Schuller; Y. Zhu; J. Zhang; W.M.P.B. Menge; Rob Leurs; H. Timmerman; J.E. Pintar

Improgan is an analog of the H(2) antagonist cimetidine that does not act on known histamine receptors, but induces highly effective analgesia in rodents following intracerebroventricular (icv) administration. Since the mechanism of action of this compound remains unknown, improgan analgesia was characterized presently with the tail immersion nociceptive test in mutant mice lacking either the mu (exon 1 of MOR-1), delta (exon 2 of DOR-1) or kappa (exon 3 of KOR-1) opioid receptor. Improgan (30 microg, icv) induced reversible, maximal analgesia in both sexes of all three genotypes (+/+, +/- and -/-) of MOR-1 mutant mice 10 and 20 min after administration, whereas morphine analgesia was reduced (+/-) or abolished (-/-) in these subjects. In DOR-1 mutant mice, improgan was equally effective in all three genotypes, despite the reduction (+/-) or complete loss (-/-) of delta opioid receptor (3H-[D-Pen(2), D-Pen(5)]enkephalin, DPDPE) binding. Similarly, improgan analgesia was equivalent in all three genotypes of KOR-1 mutant mice, whereas kappa-mediated analgesia (U50,488) and kappa opioid (3H-U69,593) binding were abolished in the homozygous (-/-) mice. These studies demonstrate that improgan analgesia does not require intact MOR-1, DOR-1, or KOR-1 genes, and support the hypothesis that improgan-like analgesics act in the CNS by non-opioid mechanisms.


Life Sciences | 1998

Antinociceptive activity of impentamine, a histamine congener, after CNS administration.

Lindsay B. Hough; Julia W. Nalwalk; Rob Leurs; W.M.P.B. Menge; H. Timmerman

The brain neuromodulator histamine induces antinociception when administered directly into the rodent CNS. However, several compounds derived from H2 and H3 antagonists also produce antinociception after central administration. Pharmacological studies have shown that a prototype of these agents, improgan, induces analgesia that is not mediated by actions on known histamine receptors. Presently, the antinociceptive properties of a compound that chemically resembles both improgan and histamine were investigated in rats. Intraventricular (i.v.t.) administration of impentamine (4-imidazolylpentylamine) induced reversible, near-maximal antinociception on the hot plate and tail flick tests (15 microg, 98 nmol). The dose-response function was extremely steep, however, since other doses showed either no effect or behavioral toxicity. On the tail flick test, impentamine antinociception was resistant to antagonism by blockers of H1, H2, or H3 receptors, similar to characteristics previously found for improgan. In contrast, histamine antinociception was highly attenuated by H1 and H2 antagonists. These findings suggest that: 1) the histamine congener impentamine may induce antinociception by a mechanism similar to that produced by improgan, and 2) additional histamine receptors may be discovered that are linked to pain-attenuating processes.


Life Sciences | 2001

Significance of GABAergic systems in the action of improgan, a non-opioid analgesic

Lindsay B. Hough; Julia W. Nalwalk; Rob Leurs; W.M.P.B. Menge; H. Timmerman

Improgan is the prototype drug from a new class of non-opioid analgesics chemically related to histamine and histamine antagonists, but the mechanism of action of these compounds has not been identified. Because several classes of analgesics act in the brain by reducing GABAergic inhibition of endogenous pain-relieving circuits, and because the activity of these substances is abolished by the GABA(A) agonist muscimol, the present study assessed the effects of muscimol on improgan antinociception in rats. Intracerebroventricular (icv) improgan (80 microg) and morphine (20 microg) both induced 80-100% of maximal analgesic responses on the tail flick test 10 to 30 min later. However, muscimol pretreatment (0.5 microg, icv) completely eliminated the antinociceptive activity of both compounds. Since improgan in vitro lacks activity at opioid and GABA(A) receptors, these findings: 1) confirm earlier literature showing that muscimol inhibits morphine analgesia, and 2) suggest that improgan activates a supraspinal, descending analgesic pathway, possibly via inhibition of GABAergic transmission. Since muscimol is the first compound discovered which inhibits improgan analgesia, muscimol will be a useful tool for the further characterization of this new class of pain-relieving substances.


Brain Research | 2004

Activation of brain stem nuclei by improgan, a non-opioid analgesic

Julia W. Nalwalk; Konstantina Svokos; O. Taraschenko; Rob Leurs; H. Timmerman; Lindsay B. Hough

Improgan is a compound developed from histamine antagonists which shows the pre-clinical profile of a highly effective, non-opioid analgesic when administered into the rodent CNS. Pharmacological studies suggest that improgan activates descending pain-relieving circuits, but the brain and spinal sites of action of this drug have not been previously studied. Presently, the effects of intracerebral and intrathecal microinjections of improgan were evaluated on thermal nociceptive responses in rats. Improgan produced large, dose- and time-related reductions in nociceptive responses following administration into the ventrolateral periaqueductal gray (PAG), the dorsal PAG, and the rostral ventromedial medulla (RVM). The drug had no measurable effects after injections into the caudate nucleus, basolateral amygdala, hippocampus, ventromedial hypothalamus, superior colliculi, ventrolateral medulla, or the spinal subarachnoid space. Inactivation of the RVM by muscimol microinjections completely attenuated antincociceptive responses produced by intraventricular improgan. These findings, taken with earlier results, show that, like opioids and cannabinoids, improgan acts in the PAG and RVM to activate descending analgesic systems. Unlike these other analgesics, improgan does not act in the spinal cord or in CNS areas outside of the brain stem.


Brain Research | 2003

Improgan antinociception does not require neuronal histamine or histamine receptors

Jalal Izadi Mobarakeh; Julia W. Nalwalk; Takeshi Watanabe; Shinobu Sakurada; Marcel Hoffman; Rob Leurs; Henk Timmerman; Immaculada Silos-Santiago; Kazuhiko Yanai; Lindsay B. Hough

Improgan, a chemical congener of the H(2) antagonist cimetidine, induces antinociception following intracerebroventricular (i.c.v.) administration in rodents, but the mechanism of action of this compound remains unknown. Because the chemical structure of improgan closely resembles those of histamine and certain histamine blockers, and because neuronal histamine is known to participate in pain-relieving responses, the antinociceptive actions of improgan were evaluated in mice containing null mutations in the genes for three histamine receptors (H(1), H(2), and H(3)) and also in the gene for histidine decarboxylase (the histamine biosynthetic enzyme). Similar to earlier findings in Swiss-Webster mice, improgan induced maximal, reversible, dose-related reductions in thermal nociceptive responses in ICR mice, but neither pre-improgan (baseline) nor post-improgan nociceptive latencies were changed in any of the mutant mice as compared with wild-type controls. Improgan also had weak inhibitory activity in vitro (pK(i)=4.7-4.9) on specific binding to three recently-discovered, recombinant isoforms of the rat H(3) receptor (H(3A), H(3B), and H(3C)). The present findings strongly support the hypothesis that neuronal histamine and its receptors fail to play a role in improgan-induced antinociception.


Annals of the New York Academy of Sciences | 2006

A third life for burimamide. Discovery and characterization of a novel class of non-opioid analgesics derived from histamine antagonists.

Lindsay B. Hough; Julia W. Nalwalk; William G. Barnes; Rob Leurs; W.M.P.B. Menge; Henk Timmerman; Mark P. Wentland

Abstract: Burimamide, a histamine (HA) derivative with both H2‐ and H3‐blocking properties, induces antinociception when injected into the rodent CNS. Several related compounds share this property, and structure‐activity studies have shown that this new class of analgesics is distinct from known HA antagonists. The prototype, named improgan, shows a preclinical profile of a highly effective analgesic, with activity against thermal, mechanical and inflammatory nociception after doses that do not alter motor balance or locomotor activity. Improgan analgesia is not blocked by opioid antagonists and is observed in opioid receptor knock‐out mice. Unlike morphine, improgan does not induce tolerance after daily dosing. Extensive in vitro pharmacology studies have excluded known histaminergic, opioid, serotonergic, GABAergic and adrenergic receptor mechanisms, as well as 50 other sites of action. The improgan‐like analgesic activity of some HA congeners suggests an analgesic action on a novel HA receptor, but further studies are required to substantiate this. Studies in progress are characterizing the sites and mechanisms of action of improgan, and developing brain‐penetrating derivatives that could be useful for clinical pain.


Brain Research | 2001

A role for spinal, but not supraspinal, alpha(2) adrenergic receptors in the actions of improgan, a powerful, non-opioid analgesic

Konstantina Svokos; Julia W. Nalwalk; Rob Leurs; W.M.P.B. Menge; Henk Timmerman; Lindsay B. Hough

Improgan is a derivative of cimetidine that induces non-opioid antinociception after intracerebroventricular (i.c.v.) administration, but the mechanism of action of this compound remains unknown. Since activation of either supraspinal or spinal alpha(2) adrenergic receptors can induce antinociception, and since improgan showed affinity for these receptors in vitro, the effects of the alpha(2) antagonist yohimbine on improgan antinociception were presently studied in rats on the hot plate and tail flick tests. Systemic yohimbine pretreatment (4 mg/kg, i.p.) completely blocked improgan antinociception (80 microg, i.c.v.), suggesting a mediator role for alpha(2) receptors. However, i.c.v. pretreatment with yohimbine (30 microg) had no effect on improgan antinociception. Since this treatment completely antagonized clonidine antinociception (40 microg, i.c.v.), supraspinal alpha(2) receptors seem to mediate the antinociceptive effects of clonidine, but not that produced by improgan. In contrast, intrathecal (i.t.) yohimbine pretreatment (30 microg) completely blocked the antinociception elicited by i.c.v. improgan and i.c.v. morphine. These results suggest that spinal (but not supraspinal) alpha(2) adrenergic receptors play a significant role in the pain-relieving actions of improgan. Furthermore, although improgan shows some affinity at alpha(2) receptors, this drug does not act directly at these receptors to induce antinociceptive responses. Like several other classes of analgesics, improgan-like drugs seem to activate non-opioid, descending pain-relieving circuits.

Collaboration


Dive into the Rob Leurs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iwan de Esch

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Timmerman

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge