Rob Linning
Agriculture and Agri-Food Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rob Linning.
The Plant Cell | 2012
John D. Laurie; Shawkat Ali; Rob Linning; Gertrud Mannhaupt; Philip C. Wong; Ulrich Güldener; Martin Münsterkötter; Richard G. Moore; Regine Kahmann; Guus Bakkeren; Jan Schirawski
The genome sequence of Ustilago hordei revealed that transposable elements were involved in restructuring of the genome, which affected fungal reproductive biology and evolution of genes encoding effector proteins. Comparison to other smuts indicated loss of genome defense components in Ustilago maydis and control of repetitive sequences by repeat-induced point mutation in U. hordei. Ustilago hordei is a biotrophic parasite of barley (Hordeum vulgare). After seedling infection, the fungus persists in the plant until head emergence when fungal spores develop and are released from sori formed at kernel positions. The 26.1-Mb U. hordei genome contains 7113 protein encoding genes with high synteny to the smaller genomes of the related, maize-infecting smut fungi Ustilago maydis and Sporisorium reilianum but has a larger repeat content that affected genome evolution at important loci, including mating-type and effector loci. The U. hordei genome encodes components involved in RNA interference and heterochromatin formation, normally involved in genome defense, that are lacking in the U. maydis genome due to clean excision events. These excision events were possibly a result of former presence of repetitive DNA and of an efficient homologous recombination system in U. maydis. We found evidence of repeat-induced point mutations in the genome of U. hordei, indicating that smut fungi use different strategies to counteract the deleterious effects of repetitive DNA. The complement of U. hordei effector genes is comparable to the other two smuts but reveals differences in family expansion and clustering. The availability of the genome sequence will facilitate the identification of genes responsible for virulence and evolution of smut fungi on their respective hosts.
Proteomics | 2011
Xiao Song; Christof Rampitsch; Bahram Soltani; Wayne Mauthe; Rob Linning; Travis W. Banks; Brent McCallum; Guus Bakkeren
Puccinia triticina (Pt) is a representative of several cereal‐infecting rust fungal pathogens of major economic importance world wide. Upon entry through leaf stomata, these fungi establish intracellular haustoria, crucial feeding structures. We report the first proteome of infection structures from parasitized wheat leaves, enriched for haustoria through filtration and sucrose density centrifugation. 2‐D PAGE MS/MS and gel‐based LC‐MS (GeLC‐MS) were used to separate proteins. Generated spectra were compared with a partial proteome predicted from a preliminary Pt genome and generated ESTs, to a comprehensive genome‐predicted protein complement from the related wheat stem rust fungus, Puccinia graminis f. sp. tritici (Pgt) and to various plant resources. We identified over 260 fungal proteins, 16 of which matched peptides from Pgt. Based on bioinformatic analyses and/or the presence of a signal peptide, at least 50 proteins were predicted to be secreted. Among those, six have effector protein signatures, some are related and the respective genes of several seem to belong to clusters. Many ribosomal structural proteins, proteins involved in energy, general metabolism and transport were detected. Measuring gene expression over several life cycle stages of ten representative candidates using quantitative RT‐PCR, all were shown to be strongly upregulated and four expressed solely upon infection.
Current Genetics | 2008
John D. Laurie; Rob Linning; Guus Bakkeren
RNA interference (RNAi) acts through transcriptional and post-transcriptional gene silencing of homologous sequences. With the goal of using RNAi as a tool for studying gene function in the related basidiomycete cereal pathogens Ustilago hordei and Ustilago maydis, we developed a general purpose RNAi expression vector. Tandem, inverted fragments of the GUS gene were inserted into this vector flanking an intron and used to transform engineered GUS-expressing haploid cells. Down-regulation of the GUS gene and production of siRNAs were seen only in U. hordei, even though corresponding GUS double-stranded RNA was detected in both species. Similarly, when the endogenous bW mating-type gene was targeted by RNAi, mating was reduced only in U. hordei. Our work demonstrates the feasibility of using RNAi in U. hordei and provides experimental support for the observed lack of RNAi components in the U. maydis genome. We hypothesize that the sharply limited transposon complement in U. maydis is a biological consequence of this absence.
Molecular Plant Pathology | 2007
Guanggan Hu; Rob Linning; Brent McCallum; Travis W. Banks; Sylvie Cloutier; Yaron S N Butterfield; Jerry Liu; Robert Kirkpatrick; Jeff M. Stott; George P. Yang; Duane E. Smailus; Steven J.M. Jones; Marco A. Marra; Jacqueline E. Schein; Guus Bakkeren
SUMMARY Thirteen cDNA libraries constructed from small amounts of leaf rust mRNA using optimized methods served as the source for the generation of 25 558 high-quality DNA sequence reads. Five life-cycle stages were sampled: resting urediniospores, urediniospores germinated over water or plant extract, compatible, interactive stages during appressorium or haustorium formation just before sporulation, and an incompatible interaction. mRNA populations were subjected to treatments such as full-length cDNA production, subtractive and normalizing hybridizations, and size selection methods combined with PCR amplification. Pathogen and host sequences from interactive libraries were differentiated in silico using cereal and fungal sequences, codon usage analyses, and by means of a partial prototype cDNA microarray hybridized with genomic DNAs. This yielded a non-redundant unigene set of 9760 putative fungal sequences consisting of 6616 singlets and 3144 contigs, representing 4.7 Mbp. At an E-value 10(-5), 3670 unigenes (38%) matched sequences in various databases and collections but only 694 unigenes (7%) were similar to genes with known functions. In total, 296 unigenes were identified as most probably wheat and ten as rRNA sequences. Annotation rates were low for germinated urediniospores (4%) and appressoria (2%). Gene sets obtained from the various life-cycle stages appear to be remarkably different, suggesting drastic reprogramming of the transcriptome during these major differentiation processes. Redundancy within contigs yielded information about possible expression levels of certain genes among stages. Many sequences were similar to genes from other rusts such as Uromyces and Melampsora species; some of these genes have been implicated in pathogenicity and virulence.
BMC Genomics | 2011
Junhuan Xu; Rob Linning; John P. Fellers; Matthew Dickinson; Wenhan Zhu; Ivan Antonov; David L. Joly; Michael E. Donaldson; Tamar Eilam; Y. Anikster; Travis W. Banks; Sarah Munro; Michael Mayo; Brian Wynhoven; Johar Ali; Richard G. Moore; Brent McCallum; Mark Borodovsky; Barry J. Saville; Guus Bakkeren
BackgroundRust fungi are biotrophic basidiomycete plant pathogens that cause major diseases on plants and trees world-wide, affecting agriculture and forestry. Their biotrophic nature precludes many established molecular genetic manipulations and lines of research. The generation of genomic resources for these microbes is leading to novel insights into biology such as interactions with the hosts and guiding directions for breakthrough research in plant pathology.ResultsTo support gene discovery and gene model verification in the genome of the wheat leaf rust fungus, Puccinia triticina (Pt), we have generated Expressed Sequence Tags (ESTs) by sampling several life cycle stages. We focused on several spore stages and isolated haustorial structures from infected wheat, generating 17,684 ESTs. We produced sequences from both the sexual (pycniospores, aeciospores and teliospores) and asexual (germinated urediniospores) stages of the life cycle. From pycniospores and aeciospores, produced by infecting the alternate host, meadow rue (Thalictrum speciosissimum), 4,869 and 1,292 reads were generated, respectively. We generated 3,703 ESTs from teliospores produced on the senescent primary wheat host. Finally, we generated 6,817 reads from haustoria isolated from infected wheat as well as 1,003 sequences from germinated urediniospores. Along with 25,558 previously generated ESTs, we compiled a database of 13,328 non-redundant sequences (4,506 singlets and 8,822 contigs). Fungal genes were predicted using the EST version of the self-training GeneMarkS algorithm. To refine the EST database, we compared EST sequences by BLASTN to a set of 454 pyrosequencing-generated contigs and Sanger BAC-end sequences derived both from the Pt genome, and to ESTs and genome reads from wheat. A collection of 6,308 fungal genes was identified and compared to sequences of the cereal rusts, Puccinia graminis f. sp. tritici (Pgt) and stripe rust, P. striiformis f. sp. tritici (Pst), and poplar leaf rust Melampsora species, and the corn smut fungus, Ustilago maydis (Um). While extensive homologies were found, many genes appeared novel and species-specific; over 40% of genes did not match any known sequence in existing databases. Focusing on spore stages, direct comparison to Um identified potential functional homologs, possibly allowing heterologous functional analysis in that model fungus. Many potentially secreted protein genes were identified by similarity searches against genes and proteins of Pgt and Melampsora spp., revealing apparent orthologs.ConclusionsThe current set of Pt unigenes contributes to gene discovery in this major cereal pathogen and will be invaluable for gene model verification in the genome sequence.
Molecular Plant-microbe Interactions | 2007
Guanggan Hu; Andrena Kamp; Rob Linning; Suresh Naik; Guus Bakkeren
From a large expressed sequence tag (EST) database representing several developmental stages of Puccinia triticina, we discovered a mitogen-activated protein kinase (MAPK) with homology to kinases with known pathogenic functions in other fungi. This PtMAPK1 is similar to the Ustilago maydis MAPK, Ubc3/Kpp2, but has a longer N-terminal extension of 43 amino acids (aa) with identities to U. maydis Kpp6, a homolog of Ubc3/Kpp2 with a 170-aa N-terminal extension. Ubc3/Kpp2 is involved in mating and subsequent pathogenic development, whereas Kpp6 functions during invasive growth in corn tissue. PtMAPK1, expressed from a Ustilago sp.-specific promoter, was able to complement a ubc3/kpp2 deletion mutant and restore mating. It also substantially increased virulence on corn, measured as tumor formation, of a kpp6 deletion mutant. Moreover, this construct restored to near-full pathogenicity a ubc3/kpp2 kpp6 nonpathogenic double deletion mutant. Complementation of the ubc3/kpp2 mutant with the complete PtMAPK gene and verification of expression by reverse-transcription polymerase chain reaction indicated that the rust promoter is recognized in U. maydis. Phylogenetically, these basidiomycete plant pathogens are related, which was reflected in comparison of P. triticina ESTs to U. maydis gene sequences. The U. maydis heterologous expression system allows functional analysis of rust genes, currently frustrated by the lack of efficient transformation and selection procedures.
Genetics | 2004
Rob Linning; D. Lin; Nancy Lee; M. Abdennadher; D. Gaudet; P. Thomas; D. Mills; James W. Kronstad; Guus Bakkeren
Race-cultivar specialization during the interaction of the basidiomycete smut pathogen Ustilago hordei with its barley host was described in the 1940s. Subsequent genetic analyses revealed the presence of dominant avirulence genes in the pathogen that conform to the gene-for-gene theory. This pathosystem therefore presents an opportunity for the molecular genetic characterization of fungal genes controlling avirulence. We performed a cross between U. hordei strains to obtain 54 progeny segregating for three dominant avirulence genes on three differential barley cultivars. Bulked segregant analysis was used to identify RAPD and AFLP markers tightly linked to the avirulence gene UhAvr1. The UhAvr1 gene is located in an area containing repetitive DNA and this region is undetectable in cosmid libraries prepared from the avirulent parental strain. PCR and hybridization probes developed from the linked markers were therefore used to identify cosmid clones from the virulent (Uhavr1) parent. By walking on Uhavr1-linked cosmid clones, a nonrepetitive, nearby probe was found that recognized five overlapping BAC clones spanning 170 kb from the UhAvr1 parent. A contig of the clones in the UhAvr1 region was constructed and selected probes were used for RFLP analysis of the segregating population. This approach genetically defined an ∼80-kb region that carries the UhAvr1 gene and provided cloned sequences for subsequent genetic analysis. UhAvr1 represents the first avirulence gene cloned from a basidiomycete plant pathogen.
The Plant Cell | 2013
François Lefebvre; David L. Joly; Caroline Labbé; Beate Teichmann; Rob Linning; François Belzile; Guus Bakkeren; Richard R. Bélanger
This work examines the relationship between the biocontrol agent Pseudozyma flocculosa and its fungal relatives, including the pathogen Ustilago maydis, finding subtle yet crucial genetic differences that may explain the nonpathogenic nature of P. flocculosa, including loss of a specific subset of candidate secreted effector proteins. Pseudozyma flocculosa is related to the model plant pathogen Ustilago maydis yet is not a phytopathogen but rather a biocontrol agent of powdery mildews; this relationship makes it unique for the study of the evolution of plant pathogenicity factors. The P. flocculosa genome of ∼23 Mb includes 6877 predicted protein coding genes. Genome features, including hallmarks of pathogenicity, are very similar in P. flocculosa and U. maydis, Sporisorium reilianum, and Ustilago hordei. Furthermore, P. flocculosa, a strict anamorph, revealed conserved and seemingly intact mating-type and meiosis loci typical of Ustilaginales. By contrast, we observed the loss of a specific subset of candidate secreted effector proteins reported to influence virulence in U. maydis as the singular divergence that could explain its nonpathogenic nature. These results suggest that P. flocculosa could have once been a virulent smut fungus that lost the specific effectors necessary for host compatibility. Interestingly, the biocontrol agent appears to have acquired genes encoding secreted proteins not found in the compared Ustilaginales, including necrosis-inducing-Phytophthora-protein- and Lysin-motif- containing proteins believed to have direct relevance to its lifestyle. The genome sequence should contribute to new insights into the subtle genetic differences that can lead to drastic changes in fungal pathogen lifestyles.
PLOS Pathogens | 2014
Shawkat Ali; John D. Laurie; Rob Linning; José Antonio Cervantes-Chávez; Denis A. Gaudet; Guus Bakkeren
The basidiomycete smut fungus Ustilago hordei was previously shown to comprise isolates that are avirulent on various barley host cultivars. Through genetic crosses we had revealed that a dominant avirulence locus UhAvr1 which triggers immunity in barley cultivar Hannchen harboring resistance gene Ruh1, resided within an 80-kb region. DNA sequence analysis of this genetically delimited region uncovered the presence of 7 candidate secreted effector proteins. Sequence comparison of their coding sequences among virulent and avirulent parental and field isolates could not distinguish UhAvr1 candidates. Systematic deletion and complementation analyses revealed that UhAvr1 is UHOR_10022 which codes for a small effector protein of 171 amino acids with a predicted 19 amino acid signal peptide. Virulence in the parental isolate is caused by the insertion of a fragment of 5.5 kb with similarity to a common U. hordei transposable element (TE), interrupting the promoter of UhAvr1 and thereby changing expression and hence recognition of UhAVR1p. This rearrangement is likely caused by activities of TEs and variation is seen among isolates. Using GFP-chimeric constructs we show that UhAvr1 is induced only in mated dikaryotic hyphae upon sensing and infecting barley coleoptile cells. When infecting Hannchen, UhAVR1p causes local callose deposition and the production of reactive oxygen species and necrosis indicative of the immune response. UhAvr1 does not contribute significantly to overall virulence. UhAvr1 is located in a cluster of ten effectors with several paralogs and over 50% of TEs. This cluster is syntenous with clusters in closely-related U. maydis and Sporisorium reilianum. In these corn-infecting species, these clusters harbor however more and further diversified homologous effector families but very few TEs. This increased variability may have resulted from past selection pressure by resistance genes since U. maydis is not known to trigger immunity in its corn host.
G3: Genes, Genomes, Genetics | 2017
Christina A. Cuomo; Guus Bakkeren; Hala Badr Khalil; Vinay Panwar; David L. Joly; Rob Linning; Sharadha Sakthikumar; Xiao Song; Xian Adiconis; Lin Fan; Jonathan M. Goldberg; Joshua Z. Levin; Qiandong Zeng; Y. Anikster; Myron Bruce; Meinan Wang; Chuntao Yin; Brent McCallum; Les J. Szabo; Scot H. Hulbert; Xianming Chen; John P. Fellers
Three members of the Puccinia genus, Puccinia triticina (Pt), P. striiformis f.sp. tritici (Pst), and P. graminis f.sp. tritici (Pgt), cause the most common and often most significant foliar diseases of wheat. While similar in biology and life cycle, each species is uniquely adapted and specialized. The genomes of Pt and Pst were sequenced and compared to that of Pgt to identify common and distinguishing gene content, to determine gene variation among wheat rust pathogens, other rust fungi, and basidiomycetes, and to identify genes of significance for infection. Pt had the largest genome of the three, estimated at 135 Mb with expansion due to mobile elements and repeats encompassing 50.9% of contig bases; in comparison, repeats occupy 31.5% for Pst and 36.5% for Pgt. We find all three genomes are highly heterozygous, with Pst [5.97 single nucleotide polymorphisms (SNPs)/kb] nearly twice the level detected in Pt (2.57 SNPs/kb) and that previously reported for Pgt. Of 1358 predicted effectors in Pt, 784 were found expressed across diverse life cycle stages including the sexual stage. Comparison to related fungi highlighted the expansion of gene families involved in transcriptional regulation and nucleotide binding, protein modification, and carbohydrate degradation enzymes. Two allelic homeodomain pairs, HD1 and HD2, were identified in each dikaryotic Puccinia species along with three pheromone receptor (STE3) mating-type genes, two of which are likely representing allelic specificities. The HD proteins were active in a heterologous Ustilago maydis mating assay and host-induced gene silencing (HIGS) of the HD and STE3 alleles reduced wheat host infection.