Rob Ruijtenbeek
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rob Ruijtenbeek.
Cancer Research | 2009
Arend H. Sikkema; Sander H. Diks; Wilfred F. A. den Dunnen; Arja ter Elst; Frank J. G. Scherpen; Eelco W. Hoving; Rob Ruijtenbeek; Piet J. Boender; Rik de Wijn; Willem A. Kamps; Maikel P. Peppelenbosch; Eveline S. J. M. de Bont
Progression in pediatric brain tumor growth is thought to be the net result of signaling through various protein kinase-mediated networks driving cell proliferation. Defining new targets for treatment of human malignancies, without a priori knowledge on aberrant cell signaling activity, remains exceedingly complicated. Here, we introduce kinome profiling using flow-through peptide microarrays as a new concept for target discovery. Comprehensive tyrosine kinase activity profiles were identified in 29 pediatric brain tumors using the PamChip kinome profiling system. Previously reported activity of epidermal growth factor receptor, c-Met, and vascular endothelial growth factor receptor in pediatric brain tumors could be appreciated in our array results. Peptides corresponding with phosphorylation consensus sequences for Src family kinases showed remarkably high levels of phosphorylation compared with normal tissue types. Src activity was confirmed applying Phos-Tag SDS-PAGE. Furthermore, the Src family kinase inhibitors PP1 and dasatinib induced substantial tumor cell death in nine pediatric brain tumor cell lines but not in control cell lines. Thus, this study describes a new high-throughput technique to generate clinically relevant tyrosine kinase activity profiles as has been shown here for pediatric brain tumors. In the era of a rapidly increasing number of small-molecule inhibitors, this approach will enable us to rapidly identify new potential targets in a broad range of human malignancies.
ChemBioChem | 2008
Hilbert M. Branderhorst; Rob Ruijtenbeek; Rob M. J. Liskamp; Roland J. Pieters
Dendrimers were fitted out with up to eight mannose moieties by “click” chemistry. They were subsequently attached to aluminum oxide chips via a spacer that was linked to the dendrimer core; this resulted in a microarray of glycodendrimers. Binding of the glycodendrimers to the fluorescent lectins ConA and GNA was observable in real time. In a single experiment it was possible to observe the multivalency enhancement or cluster effect in the binding event. This effect was small for ConA, in agreement with its widely spaced binding sites, whereas it was large for GNA, with its twelve much more closely spaced binding sites. The dendrimer‐fitted chip represents a valuable screening tool for multivalency effects. Furthermore kinetic and thermodynamic data on binding events can be deduced. Inhibition experiments are also possible with the system as was shown for ConA with α‐methyl mannose as the inhibitor.
Molecular & Cellular Proteomics | 2007
Simone Lemeer; Rob Ruijtenbeek; Martijn W. H. Pinkse; J.C. Jopling; Albert J. R. Heck; J. den Hertog; Monique Slijper
In the developing embryo, cell growth, differentiation, and migration are strictly regulated by complex signaling pathways. One of the most important cell signaling mechanisms is protein phosphorylation on tyrosine residues, which is tightly controlled by protein-tyrosine kinases and protein-tyrosine phosphatases. Here we investigated endogenous phosphotyrosine signaling in developing zebrafish embryos. Tyrosine phosphorylated proteins were immunoaffinity-purified from zebrafish embryos at 3 and 5 days postfertilization and identified by multidimensional LC-MS. Among the identified proteins were tyrosine kinases, including Src family kinases, Eph receptor kinases, and focal adhesion kinases, as well as the adaptor proteins paxillin, p130Cas, and Crk. We identified several known and some unknown in vivo tyrosine phosphorylation sites in these proteins. Whereas most immunoaffinity-purified proteins were detected at both developmental stages, significant differences in abundance and/or phosphorylation state were also observed. In addition, multiplex in vitro kinase assays were performed by incubating a microarray of peptide substrates with the lysates of the two developmental stages. Many of the in vivo observations were confirmed by this on-chip in vitro kinase assay. Our experiments are the first to show that global tyrosine phosphorylation-mediated signaling can be studied at endogenous levels in complex multicellular organisms.
Analytical Biochemistry | 2009
Riet Hilhorst; Liesbeth Houkes; Adrienne van den Berg; Rob Ruijtenbeek
A microarray-based mix-and-measure, nonradioactive multiplex method with real-time detection was used for substrate identification, assay development, assay optimisation, and kinetic characterization of protein kinase A (PKA). The peptide arrays included either up to 140 serine/threonine-containing peptides or a concentration series of a smaller number of peptides. In comparison with existing singleplex assays, data quality was high, variation in assay conditions and reagent consumption were reduced considerably, and assay development could be accelerated because phosphorylation kinetics were monitored simultaneously on 4, 12, or 96 arrays. PKA was shown to phosphorylate many peptides containing known PKA phosphorylation sites as well as some new substrates. The kinetic behavior of the enzyme and the mechanism of inhibition by AMP-PNP, staurosporin, and PKA inhibitor peptide on the peptide microarray correlated well with data from homogeneous assays. Using this multiplex setup, we showed that the kinetic parameters of PKA and the potency of PKA inhibitors can be affected by the sequence of the peptide substrate. The technology enables kinetic monitoring of kinase activity in a multiplex setting such as a cell or tissue lysate. Finally, this high-throughput method allows fast identification of peptide substrates for serine/threonine kinases that are still uncharacterized.
ChemBioChem | 2001
Rob Ruijtenbeek; John A. W. Kruijtzer; Wendy van de Wiel; Marcel J.E. Fischer; Martin Flück; Frank A. Redegeld; Rob M. J. Liskamp; Frans P. Nijkamp
Peptoid–peptide hybrids are oligomeric peptidomimetics that contain one or more N‐substituted glycine residues. In these hybrids, the side chains of one or several amino acids are “shifted” from the α‐carbon atom to the amide nitrogen atom. A library of phosphorylated peptoid–peptide hybrids derived from the sequence pTyr‐Glu‐Thr‐Leu was synthesized and tested for binding to the tandem SH2 domain of the protein tyrosine kinase Syk. A considerable influence of the side chain position was observed. Compounds 19–21, 24, and 25 comprising a peptoid NpTyr and/or NGlu residue did not show any binding. Compounds 22, 23, and 26 containing an NhThr (hThr=homothreonine) and/or NLeu peptoid residue showed binding with IC50 values that were only five to eight times higher than that of the tetrapeptide lead compound 18. These data show that side chain shifting is possible with retention of binding capacity, but only at the two C‐terminal residues of the tetramer. This method of a peptoid scan using peptoid–peptide hybrids appears to be very useful to explore to what extent a peptide sequence can be transformed into a peptoid while retaining its affinity.
ChemBioChem | 2010
Núria Parera Pera; Hilbert M. Branderhorst; Raymond Kooij; Caroline Maierhofer; Marjolein van der Kaaden; Rob M. J. Liskamp; Valentin Wittmann; Rob Ruijtenbeek; Roland J. Pieters
Multivalency is an important phenomenon in protein–carbohydrate interactions. In order to evaluate glycodendrimers as multivalent inhibitors of carbohydrate binding proteins, we displayed them on a microarray surface. Valencies were varied from 1 to 8, and corrections were made for the valencies so that all surfaces contained the same amount of the sugar ligand. Five different carbohydrates were attached to the dendrimers. A series of fluorescent lectins was evaluated, and for each of them a binding profile was obtained from a single experiment showing both the specificity of the lectin for a certain sugar and whether it prefers multivalent ligands or not. Very distinct binding patterns were seen for the various lectins. The results were rationalized with respect to the interbinding distances of the lectins.
PLOS ONE | 2007
Simone Lemeer; C.J. Jopling; Faris Naji; Rob Ruijtenbeek; Monique Slijper; Albert J. R. Heck; Jeroen den Hertog
Background Protein-tyrosine kinases (PTKs) regulate virtually all biological processes. PTKs phosphorylate substrates in a sequence-specific manner and relatively short peptide sequences determine selectivity. Here, we developed new technology to determine PTK activity profiles using peptide arrays. The zebrafish is an excellent model system to investigate signaling in the whole organism, given its wealth of genetic tools, including morpholino-mediated knock down technology. We used zebrafish embryo lysates to determine PTK activity profiles, thus providing the unique opportunity to directly compare the effect of protein knock downs on PTK activity profiles on the one hand and phenotypic changes on the other. Methodology We used multiplex arrays of 144 distinct peptides, spotted on a porous substrate, allowing the sample to be pumped up and down, optimizing reaction kinetics. Kinase reactions were performed using complex zebrafish embryo lysates or purified kinases. Peptide phosphorylation was detected by fluorescent anti-phosphotyrosine antibody binding and the porous chips allowed semi-continuous recording of the signal. We used morpholinos to knock down protein expression in the zebrafish embryos and subsequently, we determined the effects on the PTK activity profiles. Results and Conclusion Reproducible PTK activity profiles were derived from one-day-old zebrafiish embryos. Morpholino-mediated knock downs of the Src family kinases, Fyn and Yes, induced characteristic phenotypes and distinct changes in the PTK activity profiles. Interestingly, the peptide substrates that were less phosphorylated upon Fyn and Yes knock down were preferential substrates of purified Fyn and Yes. Previously, we demonstrated that Wnt11 knock down phenocopied Fyn/Yes knock down. Interestingly, Wnt11 knock down induced similar changes in the PTK activity profile as Fyn/Yes knock down. The control Nacre/Mitfa knock down did not affect the PTK activity profile significantly. Our results indicate that the novel peptide chip technology can be used to unravel kinase signaling pathways in vivo.
International Journal of Radiation Oncology Biology Physics | 2010
Sigurd Folkvord; Kjersti Flatmark; Svein Dueland; Rik de Wijn; Krystyna Grøholt; Knut Håkon Hole; Jahn M. Nesland; Rob Ruijtenbeek; Piet J. Boender; Marianne Johansen; Karl Erik Giercksky; Anne Hansen Ree
PURPOSE Tumor response of rectal cancer to preoperative chemoradiotherapy (CRT) varies considerably. In experimental tumor models and clinical radiotherapy, activity of particular subsets of kinase signaling pathways seems to predict radiation response. This study aimed to determine whether tumor kinase activity profiles might predict tumor response to preoperative CRT in locally advanced rectal cancer (LARC). METHODS AND MATERIALS Sixty-seven LARC patients were treated with a CRT regimen consisting of radiotherapy, fluorouracil, and, where possible, oxaliplatin. Pretreatment tumor biopsy specimens were analyzed using microarrays with kinase substrates, and the resulting substrate phosphorylation patterns were correlated with tumor response to preoperative treatment as assessed by histomorphologic tumor regression grade (TRG). A predictive model for TRG scores from phosphosubstrate signatures was obtained by partial-least-squares discriminant analysis. Prediction performance was evaluated by leave-one-out cross-validation and use of an independent test set. RESULTS In the patient population, 73% and 15% were scored as good responders (TRG 1-2) or intermediate responders (TRG 3), whereas 12% were assessed as poor responders (TRG 4-5). In a subset of 7 poor responders and 12 good responders, treatment outcome was correctly predicted for 95%. Application of the prediction model on the remaining patient samples resulted in correct prediction for 85%. Phosphosubstrate signatures generated by poor-responding tumors indicated high kinase activity, which was inhibited by the kinase inhibitor sunitinib, and several discriminating phosphosubstrates represented proteins derived from signaling pathways implicated in radioresistance. CONCLUSIONS Multiplex kinase activity profiling may identify functional biomarkers predictive of tumor response to preoperative CRT in LARC.
Molecular & Cellular Proteomics | 2009
Arjen Koppen; René Houtman; Dirk Pijnenburg; Ellen H. Jeninga; Rob Ruijtenbeek; Eric Kalkhoven
Nuclear receptors (NRs) are major targets for drug discovery and have key roles in development and homeostasis as well as in many diseases such as obesity, diabetes, and cancer. NRs are ligand-dependent transcription factors that need to work in concert with so-called transcriptional coregulators, including corepressors and coactivators, to regulate transcription. Upon ligand binding, NRs undergo a conformational change, which alters their binding preference for coregulators. Short α-helical sequences in the coregulator proteins, LXXLL (in coactivators) or LXXXIXXXL (in corepressors), are essential for the NR-coregulator interactions. However, little is known on how specificity is dictated. To obtain a comprehensive overview of NR-coregulator interactions, we used a microarray approach based on interactions between NRs and peptides derived from known coregulators. Using the peroxisome proliferator-activated receptor γ (PPARγ) as a model NR, we were able to generate ligand-specific interaction profiles (agonist rosiglitazone versus antagonist GW9662 versus selective PPARγ modulator telmisartan) and characterize NR mutants and isotypes (PPARα, -β/δ, and -γ). Importantly, based on the NR-coregulator interaction profile, we were able to identify TRIP3 as a novel regulator of PPARγ-mediated adipocyte differentiation. These findings indicate that NR-coregulator interaction profiling may be a useful tool for drug development and biological discovery.
Molecular Cancer Therapeutics | 2012
René Houtman; Renée de Leeuw; Mariska Rondaij; Diana Melchers; Desiree Verwoerd; Rob Ruijtenbeek; John W. M. Martens; Jacques Neefjes; Rob Michalides
With current techniques, it remains a challenge to assess coregulator binding of nuclear receptors, for example, the estrogen receptor alpha (ERα). ERα is critical in many breast tumors and is inhibited by antiestrogens such as tamoxifen in cancer therapy. ERα is also modified by acetylation and phosphorylation that affect responses to the antiestrogens as well as interactions with coregulators. Phosphorylation of ERα at Ser305 is one of the mechanisms causing tamoxifen resistance. Detection of resistance in patient samples would greatly facilitate clinical decisions on treatment, in which such patients would receive other treatments such as aromatase inhibitors or fulvestrant. Here we describe a coregulator peptide array that can be used for high-throughput analysis of full-length estrogen receptor binding. The peptide chip can detect ERα binding in cell and tumor lysates. We show that ERα phosphorylated at Ser305 associates stronger to various coregulator peptides on the chip. This implies that ERαSer305 phosphorylation increases estrogen receptor function. As this is also detected in a breast tumor sample of a tamoxifen-insensitive patient, the peptide array, as described here, may be applicable to detect tamoxifen resistance in breast tumor samples at an early stage of disease and contribute to personalized medicine. Mol Cancer Ther; 11(4); 805–16. ©2012 AACR.