Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robbert Havekes is active.

Publication


Featured researches published by Robbert Havekes.


Nature | 2009

Sleep deprivation impairs cAMP signalling in the hippocampus

Christopher G. Vecsey; George S. Baillie; Devan Jaganath; Robbert Havekes; Andrew Daniels; Mathieu E. Wimmer; Ted Huang; Kim M. Brown; Xiang-Yao Li; Giannina Descalzi; Susan S. Kim; Tao Chen; Yuze Shang; Min Zhuo; Miles D. Houslay; Ted Abel

Millions of people regularly obtain insufficient sleep. Given the effect of sleep deprivation on our lives, understanding the cellular and molecular pathways affected by sleep deprivation is clearly of social and clinical importance. One of the major effects of sleep deprivation on the brain is to produce memory deficits in learning models that are dependent on the hippocampus. Here we have identified a molecular mechanism by which brief sleep deprivation alters hippocampal function. Sleep deprivation selectively impaired 3′, 5′-cyclic AMP (cAMP)- and protein kinase A (PKA)-dependent forms of synaptic plasticity in the mouse hippocampus, reduced cAMP signalling, and increased activity and protein levels of phosphodiesterase 4 (PDE4), an enzyme that degrades cAMP. Treatment of mice with phosphodiesterase inhibitors rescued the sleep-deprivation-induced deficits in cAMP signalling, synaptic plasticity and hippocampus-dependent memory. These findings demonstrate that brief sleep deprivation disrupts hippocampal function by interfering with cAMP signalling through increased PDE4 activity. Thus, drugs that enhance cAMP signalling may provide a new therapeutic approach to counteract the cognitive effects of sleep deprivation.


Current Biology | 2013

Sleep, plasticity and memory from molecules to whole-brain networks.

Ted Abel; Robbert Havekes; Jared M. Saletin; Matthew P. Walker

Despite the ubiquity of sleep across phylogeny, its function remains elusive. In this review, we consider one compelling candidate: brain plasticity associated with memory processing. Focusing largely on hippocampus-dependent memory in rodents and humans, we describe molecular, cellular, network, whole-brain and behavioral evidence establishing a role for sleep both in preparation for initial memory encoding, and in the subsequent offline consolidation of memory. Sleep and sleep deprivation bidirectionally alter molecular signaling pathways that regulate synaptic strength and control plasticity-related gene transcription and protein translation. At the cellular level, sleep deprivation impairs cellular excitability necessary for inducing synaptic potentiation and accelerates the decay of long-lasting forms of synaptic plasticity. In contrast, rapid eye movement (REM) and non-rapid eye movement (NREM) sleep enhance previously induced synaptic potentiation, although synaptic de-potentiation during sleep has also been observed. Beyond single cell dynamics, large-scale cell ensembles express coordinated replay of prior learning-related firing patterns during subsequent NREM sleep. At the whole-brain level, somewhat analogous learning-associated hippocampal (re)activation during NREM sleep has been reported in humans. Moreover, the same cortical NREM oscillations associated with replay in rodents also promote human hippocampal memory consolidation, and this process can be manipulated using exogenous reactivation cues during sleep. Mirroring molecular findings in rodents, specific NREM sleep oscillations before encoding refresh human hippocampal learning capacity, while deprivation of sleep conversely impairs subsequent hippocampal activity and associated encoding. Together, these cross-descriptive level findings demonstrate that the unique neurobiology of sleep exerts powerful effects on molecular, cellular and network mechanisms of plasticity that govern both initial learning and subsequent long-term memory consolidation.


Behavioral Neuroscience | 2007

Exercise Improves Memory Acquisition and Retrieval in the Y-Maze Task: Relationship With Hippocampal Neurogenesis

K. van der Borght; Robbert Havekes; T. Bos; Bart J. L. Eggen; van der Eddy Zee

Enhanced physical activity is associated with improvements in cognitive function in rodents as well as in humans. The authors examined in detail which aspects of learning and memory are influenced by exercise, using a spatial Y-maze test combined with a 14-day exercise paradigm at different stages of learning. The authors show that 14 days of wheel running promotes memory acquisition, memory retention, and reversal learning. The exercise paradigm that was employed also significantly increased the number of maturing neurons, suggesting that an increase in neurogenesis underlies the positive effects of exercise on Y-maze performance. Finally, the authors show that memory acquisition in itself does not have a major impact on the number of immature neurons. However, memory retention testing and reversal learning both cause a significant reduction in the number of doublecortin and Ser133- phosphorylated pCREB-positive cells, indicating that a decrease in neurogenesis might be a prerequisite for optimal memory retrieval.


Learning & Memory | 2010

Post-training reversible inactivation of the hippocampus enhances novel object recognition memory

Ana M.M. Oliveira; Joshua D. Hawk; Ted Abel; Robbert Havekes

Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory consolidation including acquisition, retrieval, and performance. To overcome this limitation, we used an intrahippocampal injection of the GABA agonist muscimol to reversibly inactivate the hippocampus immediately after training mice in two versions of an object recognition task. We found that the inactivation of the dorsal hippocampus after training impairs object-place recognition memory but enhances novel object recognition (NOR) memory. However, inactivation of the dorsal hippocampus after repeated exposure to the training context did not affect object recognition memory. Our findings suggest that object recognition memory formation does not require the hippocampus and, moreover, that activity in the hippocampus can interfere with the consolidation of object recognition memory when object information encoding occurs in an unfamiliar environment.


Journal of Sleep Research | 2009

Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation

Roelina Hagewoud; Robbert Havekes; Arianna Novati; Jan N. Keijser; Eddy A. Van der Zee; Peter Meerlo

Sleep is important for brain function and cognitive performance. Sleep deprivation (SD) may affect subsequent learning capacity and ability to form new memories, particularly in the case of hippocampus‐dependent tasks. In the present study we examined whether SD for 6 or 12 h during the normal resting phase prior to learning affects hippocampus‐dependent working memory in mice. In addition, we determined effects of SD on hippocampal glutamate α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptors and their regulatory pathways, which are crucially involved in working memory. After 12 h SD, but not yet after 6 h, spatial working memory in a novel arm recognition task was significantly impaired. This deficit was not likely due to stress as corticosterone levels after SD were not significantly different between groups. In parallel with the change in cognitive function, we found that 12 h SD significantly reduced hippocampal AMPA receptor phosphorylation at the GluR1‐S845 site, which is important for incorporation of the receptors into the membrane. SD did not affect protein levels of cyclic‐AMP‐dependent protein kinase A (PKA) or phosphatase calcineurin (CaN), which regulate GluR1 phosphorylation. However, SD did reduce the expression of the scaffolding molecule A‐kinase anchoring protein 150 (AKAP150), which binds and partly controls the actions of PKA and CaN. In conclusion, a relatively short SD during the normal resting phase may affect spatial working memory in mice by reducing hippocampal AMPA receptor function through a change in AKAP150 levels. Together, these findings provide further insight into the possible mechanism of SD‐induced hippocampal dysfunction and memory impairment.


Behavioural Brain Research | 2006

Hippocampal cell proliferation across the day: Increase by running wheel activity, but no effect of sleep and wakefulness

Karin Van der Borght; Francesca Ferrari; Karin Klauke; Viktor Roman; Robbert Havekes; Andrea Sgoifo; Eddy A. Van der Zee; Peter Meerlo

The present study investigated whether proliferation of hippocampal progenitors is subject to circadian modulation. Mice were perfused using 3h intervals throughout the light-dark cycle and brains were stained for Ki-67. Since Ki-67 is not expressed during the G0 phase of the cell cycle, we expected a decline in Ki-67 expression at the moment cells synchronously exit the cell cycle. However, despite the fact that various hippocampal factors fluctuate across the day, the number of dividing cells remained constant. In a second experiment, we studied whether disturbance of normal sleep affected the stable rate in cell proliferation. Our data show that 12h of sleep deprivation during the light phase did not influence proliferating cell number. A third experiment investigated whether physical activity, a condition known to enhance hippocampal cell proliferation, caused an elevation of the steady baseline number of proliferating progenitors, or a peak directly following the active phase of the animals. Mice were housed with a running wheel for 9 days. On the last day, animals were sacrificed either directly before or directly after the active phase. Exercise significantly promoted cell proliferation and this effect appeared to be strongest directly after the active period and to disappear during the resting phase. Our data suggest that hippocampal cell proliferation is not synchronized under basal conditions and is unchanged by sleep deprivation. However, running affected cell proliferation differentially at two times of day. These data demonstrate that the steady rate in cell proliferation is not indispensable, but can be changed by behavioral activity.


Neuroscience | 2015

Sleep deprivation and hippocampal vulnerability : Changes in neuronal plasticity, neurogenesis and cognitive function

J.C. Kreutzmann; Robbert Havekes; Ted Abel; Peter Meerlo

Despite the ongoing fundamental controversy about the physiological function of sleep, there is general consensus that sleep benefits neuronal plasticity, which ultimately supports brain function and cognition. In agreement with this are numerous studies showing that sleep deprivation (SD) results in learning and memory impairments. Interestingly, such impairments appear to occur particularly when these learning and memory processes require the hippocampus, suggesting that this brain region may be particularly sensitive to the consequences of sleep loss. Although the molecular mechanisms underlying sleep and memory formation remain to be investigated, available evidence suggests that SD may impair hippocampal neuronal plasticity and memory processes by attenuating intracellular cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) signaling which may lead to alterations in cAMP response element binding protein (CREB)-mediated gene transcription, neurotrophic signaling, and glutamate receptor expression. When restricted sleep becomes a chronic condition, it causes a reduction of hippocampal cell proliferation and neurogenesis, which may eventually lead to a reduction in hippocampal volume. Ultimately, by impairing hippocampal plasticity and function, chronically restricted and disrupted sleep contributes to cognitive disorders and psychiatric diseases.


Current Biology | 2008

Circadian Time-Place Learning in Mice Depends on Cry Genes

Eddy A. Van der Zee; Robbert Havekes; R. Paulien Barf; Roelof A. Hut; Ingrid M. Nijholt; Edwin H. Jacobs; Menno P. Gerkema

Endogenous biological clocks allow organisms to anticipate daily environmental cycles. The ability to achieve time-place associations is key to the survival and reproductive success of animals. The ability to link the location of a stimulus (usually food) with time of day has been coined time-place learning, but its circadian nature was only shown in honeybees and birds. So far, an unambiguous circadian time-place-learning paradigm for mammals is lacking. We studied whether expression of the clock gene Cryptochrome (Cry), crucial for circadian timing, is a prerequisite for time-place learning. Time-place learning in mice was achieved by developing a novel paradigm in which food reward at specific times of day was counterbalanced by the penalty of receiving a mild footshock. Mice lacking the core clock genes Cry1 and Cry2 (Cry double knockout mice; Cry1(-/-)Cry2(-/-)) learned to avoid unpleasant sensory experiences (mild footshock) and could locate a food reward in a spatial learning task (place preference). These mice failed, however, to learn time-place associations. This specific learning and memory deficit shows that a Cry-gene dependent circadian timing system underlies the utilization of time of day information. These results reveal a new functional role of the mammalian circadian timing system.


Neurobiology of Learning and Memory | 2014

Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory

Toni-Moi N. Prince; Mathieu E. Wimmer; Jennifer Hk Choi; Robbert Havekes; Sara J. Aton; Ted Abel

Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on long-term memory consolidation and synaptic plasticity, long-term memory was assessed when mice were sleep deprived following training in the hippocampus-dependent object place recognition task. We found that 3h of sleep deprivation significantly impaired memory when deprivation began 1h after training. In contrast, 3 h of deprivation beginning immediately post-training did not impair spatial memory. Furthermore, a 3-h sleep deprivation beginning 1h after training impaired hippocampal long-term potentiation (LTP), whereas sleep deprivation immediately after training did not affect LTP. Together, our findings define a specific 3-h critical period, extending from 1 to 4h after training, during which sleep deprivation impairs hippocampal function.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Deficits in spatial memory correlate with modified {gamma}-aminobutyric acid type A receptor tyrosine phosphorylation in the hippocampus

Verena Tretter; Raquel Revilla-Sanchez; Catriona M. Houston; Miho Terunuma; Robbert Havekes; Cédrick Florian; Rachel Jurd; Mansi Vithlani; Guido Michels; Andrés Couve; Werner Sieghart; Nicholas J. Brandon; Ted Abel; Trevor G. Smart; Stephen J. Moss

Fast synaptic inhibition in the brain is largely mediated by γ-aminobutyric acid receptors (GABAAR). While the pharmacological manipulation of GABAAR function by therapeutic agents, such as benzodiazepines can have profound effects on neuronal excitation and behavior, the endogenous mechanisms neurons use to regulate the efficacy of synaptic inhibition and their impact on behavior remains poorly understood. To address this issue, we created a knock-in mouse in which tyrosine phosphorylation of the GABAARs γ2 subunit, a posttranslational modification that is critical for their functional modulation, has been ablated. These animals exhibited enhanced GABAAR accumulation at postsynaptic inhibitory synaptic specializations on pyramidal neurons within the CA3 subdomain of the hippocampus, primarily due to aberrant trafficking within the endocytic pathway. This enhanced inhibition correlated with a specific deficit in spatial object recognition, a behavioral paradigm dependent upon CA3. Thus, phospho-dependent regulation of GABAAR function involving just two tyrosine residues in the γ2 subunit provides an input-specific mechanism that not only regulates the efficacy of synaptic inhibition, but has behavioral consequences.

Collaboration


Dive into the Robbert Havekes's collaboration.

Top Co-Authors

Avatar

Ted Abel

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Peter Meerlo

University of Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Jung Park

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jhk Choi

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah Schoch

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge