Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robbie Loewith is active.

Publication


Featured researches published by Robbie Loewith.


Cell | 2006

TOR signaling in growth and metabolism.

Stephan Wullschleger; Robbie Loewith; Michael N. Hall

The target of rapamycin (TOR) is a conserved Ser/Thr kinase that regulates cell growth and metabolism in response to environmental cues. Here, highlighting contributions from studies in model organisms, we review mammalian TOR complexes and the signaling branches they mediate. TOR is part of two distinct multiprotein complexes, TOR complex 1 (TORC1), which is sensitive to rapamycin, and TORC2, which is not. The physiological consequences of mammalian TORC1 dysregulation suggest that inhibitors of mammalian TOR may be useful in the treatment of cancer, cardiovascular disease, autoimmunity, and metabolic disorders.


Cell | 2006

A Pharmacological Map of the PI3-K Family Defines a Role for p110α in Insulin Signaling

Zachary A. Knight; Beatriz González; Morri Feldman; Eli R. Zunder; David D. Goldenberg; Olusegun Williams; Robbie Loewith; David Stokoe; András Balla; Balázs Tóth; Tamas Balla; William A. Weiss; Roger Williams; Kevan M. Shokat

Phosphoinositide 3-kinases (PI3-Ks) are an important emerging class of drug targets, but the unique roles of PI3-K isoforms remain poorly defined. We describe here an approach to pharmacologically interrogate the PI3-K family. A chemically diverse panel of PI3-K inhibitors was synthesized, and their target selectivity was biochemically enumerated, revealing cryptic homologies across targets and chemotypes. Crystal structures of three inhibitors bound to p110gamma identify a conformationally mobile region that is uniquely exploited by selective compounds. This chemical array was then used to define the PI3-K isoforms required for insulin signaling. We find that p110alpha is the primary insulin-responsive PI3-K in cultured cells, whereas p110beta is dispensable but sets a phenotypic threshold for p110alpha activity. Compounds targeting p110alpha block the acute effects of insulin treatment in vivo, whereas a p110beta inhibitor has no effect. These results illustrate systematic target validation using a matrix of inhibitors that span a protein family.


PLOS Biology | 2009

Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2

Morris E. Feldman; Beth Apsel; Aino Uotila; Robbie Loewith; Zachary A. Knight; Davide Ruggero; Kevan M. Shokat

The mammalian target of rapamycin (mTOR) regulates cell growth and survival by integrating nutrient and hormonal signals. These signaling functions are distributed between at least two distinct mTOR protein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to the selective inhibitor rapamycin and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)→Akt→mTOR pathway. Activated mTORC1 kinase up-regulates protein synthesis by phosphorylating key regulators of mRNA translation. By contrast, mTORC2 is resistant to rapamycin. Genetic studies have suggested that mTORC2 may phosphorylate Akt at S473, one of two phosphorylation sites required for Akt activation; this has been controversial, in part because RNA interference and gene knockouts produce distinct Akt phospho-isoforms. The central role of mTOR in controlling key cellular growth and survival pathways has sparked interest in discovering mTOR inhibitors that bind to the ATP site and therefore target both mTORC2 and mTORC1. We investigated mTOR signaling in cells and animals with two novel and specific mTOR kinase domain inhibitors (TORKinibs). Unlike rapamycin, these TORKinibs (PP242 and PP30) inhibit mTORC2, and we use them to show that pharmacological inhibition of mTOR blocks the phosphorylation of Akt at S473 and prevents its full activation. Furthermore, we show that TORKinibs inhibit proliferation of primary cells more completely than rapamycin. Surprisingly, we find that mTORC2 is not the basis for this enhanced activity, and we show that the TORKinib PP242 is a more effective mTORC1 inhibitor than rapamycin. Importantly, at the molecular level, PP242 inhibits cap-dependent translation under conditions in which rapamycin has no effect. Our findings identify new functional features of mTORC1 that are resistant to rapamycin but are effectively targeted by TORKinibs. These potent new pharmacological agents complement rapamycin in the study of mTOR and its role in normal physiology and human disease.


Genetics | 2011

Target of rapamycin (TOR) in nutrient signaling and growth control

Robbie Loewith; Michael N. Hall

TOR (Target Of Rapamycin) is a highly conserved protein kinase that is important in both fundamental and clinical biology. In fundamental biology, TOR is a nutrient-sensitive, central controller of cell growth and aging. In clinical biology, TOR is implicated in many diseases and is the target of the drug rapamycin used in three different therapeutic areas. The yeast Saccharomyces cerevisiae has played a prominent role in both the discovery of TOR and the elucidation of its function. Here we review the TOR signaling network in S. cerevisiae.


Molecular Cell | 2009

The Vam6 GEF Controls TORC1 by Activating the EGO Complex

Matteo Binda; Marie-Pierre Péli-Gulli; Grégory Bonfils; Nicolas Panchaud; Joerg Urban; Thomas W. Sturgill; Robbie Loewith; Claudio De Virgilio

The target of rapamycin complex 1 (TORC1) is a central regulator of eukaryotic cell growth that is activated by a variety of hormones (e.g., insulin) and nutrients (e.g., amino acids) and is deregulated in various cancers. Here, we report that the yeast Rag GTPase homolog Gtr1, a component of the vacuolar-membrane-associated EGO complex (EGOC), interacts with and activates TORC1 in an amino-acid-sensitive manner. Expression of a constitutively active (GTP-bound) Gtr1(GTP), which interacted strongly with TORC1, rendered TORC1 partially resistant to leucine deprivation, whereas expression of a growth inhibitory, GDP-bound Gtr1(GDP), caused constitutively low TORC1 activity. We also show that the nucleotide-binding status of Gtr1 is regulated by the conserved guanine nucleotide exchange factor (GEF) Vam6. Thus, in addition to its regulatory role in homotypic vacuolar fusion and vacuole protein sorting within the HOPS complex, Vam6 also controls TORC1 function by activating the Gtr1 subunit of the EGO complex.


Genes & Development | 2009

Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis

Alexandre Huber; Bernd Bodenmiller; Aino Uotila; Michael Stahl; Stefanie Wanka; Bertran Gerrits; Ruedi Aebersold; Robbie Loewith

The target of rapamycin complex 1 (TORC1) is an essential multiprotein complex conserved from yeast to humans. Under favorable growth conditions, and in the absence of the macrolide rapamycin, TORC1 is active, and influences virtually all aspects of cell growth. Although two direct effectors of yeast TORC1 have been reported (Tap42, a regulator of PP2A phosphatases and Sch9, an AGC family kinase), the signaling pathways that couple TORC1 to its distal effectors were not well understood. To elucidate these pathways we developed and employed a quantitative, label-free mass spectrometry approach. Analyses of the rapamycin-sensitive phosphoproteomes in various genetic backgrounds revealed both documented and novel TORC1 effectors and allowed us to partition phosphorylation events between Tap42 and Sch9. Follow-up detailed characterization shows that Sch9 regulates RNA polymerases I and III, the latter via Maf1, in addition to translation initiation and the expression of ribosomal protein and ribosome biogenesis genes. This demonstrates that Sch9 is a master regulator of protein synthesis.


Science Signaling | 2010

Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast.

Bernd Bodenmiller; Stefanie Wanka; Claudine Kraft; Joerg Urban; David G. Campbell; Patrick G A Pedrioli; Bertran Gerrits; Paola Picotti; Henry H N Lam; Olga Vitek; Mi-Youn Brusniak; Bernd Roschitzki; Chao Zhang; Kevan M. Shokat; Ralph Schlapbach; Alejandro Colman-Lerner; Garry P. Nolan; Alexey I. Nesvizhskii; Matthias Peter; Robbie Loewith; Christian von Mering; Ruedi Aebersold

A system-wide analysis of protein phosphorylation in yeast reveals robustness in the network of kinases and phosphatases. Holistic Approach Protein kinases and phosphatases make attractive targets for therapies. Although various such enzymes have been characterized individually in vitro, an understanding of their roles in vivo, in the context of the entire network of kinases and phosphatases, is lacking. Indeed, inadequate knowledge of the downstream, indirect consequences of targeting a particular enzyme has led to the discontinuation of potential therapies. Bodenmiller et al. (listen to the accompanying Podcast) individually targeted most of the kinases and phosphatases in yeast, and they performed phosphoproteomic analysis of the effects of these deletions or mutations on the cellular phosphorylation network. They found that the network was surprisingly robust to perturbations in individual enzymes and that a large number of changes occurred in phosphoproteins that were not direct substrates of the targeted kinase or phosphatase. This approach should serve as a starting point toward understanding the complexity of phosphorylation regulation in yeast and other organisms. The phosphorylation and dephosphorylation of proteins by kinases and phosphatases constitute an essential regulatory network in eukaryotic cells. This network supports the flow of information from sensors through signaling systems to effector molecules and ultimately drives the phenotype and function of cells, tissues, and organisms. Dysregulation of this process has severe consequences and is one of the main factors in the emergence and progression of diseases, including cancer. Thus, major efforts have been invested in developing specific inhibitors that modulate the activity of individual kinases or phosphatases; however, it has been difficult to assess how such pharmacological interventions would affect the cellular signaling network as a whole. Here, we used label-free, quantitative phosphoproteomics in a systematically perturbed model organism (Saccharomyces cerevisiae) to determine the relationships between 97 kinases, 27 phosphatases, and more than 1000 phosphoproteins. We identified 8814 regulated phosphorylation events, describing the first system-wide protein phosphorylation network in vivo. Our results show that, at steady state, inactivation of most kinases and phosphatases affected large parts of the phosphorylation-modulated signal transduction machinery—and not only the immediate downstream targets. The observed cellular growth phenotype was often well maintained despite the perturbations, arguing for considerable robustness in the system. Our results serve to constrain future models of cellular signaling and reinforce the idea that simple linear representations of signaling pathways might be insufficient for drug development and for describing organismal homeostasis.


Oncogene | 2006

Cell growth control: little eukaryotes make big contributions

C De Virgilio; Robbie Loewith

The story of rapamycin is a pharmaceutical fairytale. Discovered as an antifungal activity in a soil sample collected on Easter Island, this macrocyclic lactone and its derivatives are now billion dollar drugs, used in, and being evaluated for, a number of clinical applications. Taking advantage of its antifungal property, the molecular Target Of Rapamycin, TOR, was first described in the budding yeast Saccharomyces cerevisiae. TORs encode large, Ser/Thr protein kinases that reside in two distinct, structurally and functionally conserved, multi-protein complexes. In yeast, these complexes coordinate many different aspects of cell growth. TOR complex 1, TORC1, promotes protein synthesis and other anabolic processes, while inhibiting macroautophagy and other catabolic and stress-response processes. TORC2 primarily regulates cell polarity, although additional readouts of this complex are beginning to be characterized. TORC1 appears to be activated by nutrient cues and inhibited by stresses and rapamycin; however, detailed mechanisms are not known. In contrast, TORC2 is insensitive to rapamycin and physiological regulators of this complex have yet to be defined. Given the unsurpassed resources available to yeast researchers, this simple eukaryote continues to contribute to our understanding of eukaryotic cell growth in general and TOR function in particular.


Molecular and Cellular Biology | 2005

Tor2 Directly Phosphorylates the AGC Kinase Ypk2 To Regulate Actin Polarization

Yoshiaki Kamada; Yuko Fujioka; Nobuo Suzuki; Fuyuhiko Inagaki; Stephan Wullschleger; Robbie Loewith; Michael N. Hall; Yoshinori Ohsumi

ABSTRACT The target of rapamycin (TOR) protein kinases, Tor1 and Tor2, form two distinct complexes (TOR complex 1 and 2) in the yeast Saccharomyces cerevisiae. TOR complex 2 (TORC2) contains Tor2 but not Tor1 and controls polarity of the actin cytoskeleton via the Rho1/Pkc1/MAPK cell integrity cascade. Substrates of TORC2 and how TORC2 regulates the cell integrity pathway are not well understood. Screening for multicopy suppressors of tor2, we obtained a plasmid expressing an N-terminally truncated Ypk2 protein kinase. This truncation appears to partially disrupt an autoinhibitory domain in Ypk2, and a point mutation in this region (Ypk2D239A) conferred upon full-length Ypk2 the ability to rescue growth of cells compromised in TORC2, but not TORC1, function. YPK2 D239A also suppressed the lethality of tor2Δ cells, suggesting that Ypks play an essential role in TORC2 signaling. Ypk2 is phosphorylated directly by Tor2 in vitro, and Ypk2 activity is largely reduced in tor2Δ cells. In contrast, Ypk2D239A has increased and TOR2-independent activity in vivo. Thus, we propose that Ypk protein kinases are direct and essential targets of TORC2, coupling TORC2 to the cell integrity cascade.


Molecular and Cellular Biology | 2000

Three Yeast Proteins Related to the Human Candidate Tumor Suppressor p33ING1 Are Associated with Histone Acetyltransferase Activities

Robbie Loewith; Maria Meijer; Susan P. Lees-Miller; Karl Riabowol; Dallan Young

ABSTRACT Three Saccharomyces cerevisiae proteins (Yng1/YOR064c, Yng2/YHR090c, and Pho23) and two Schizosaccharomyces pombeproteins (Png1/CAA15917 and Png2/CAA21250) share significant sequence identity with the human candidate tumor suppressor p33ING1in their C-terminal regions. The homologous regions contain PHD finger domains which have been implicated in chromatin-mediated transcriptional regulation. We show that GFP-Yng2, like human Ing1, is localized in the nucleus. Deletion of YNG2 results in several phenotypes, including an abnormal multibudded morphology, an inability to utilize nonfermentable carbon sources, heat shock sensitivity, slow growth, temperature sensitivity, and sensitivity to caffeine. These phenotypes are suppressed by expression of either human Ing1 or S. pombe Png1, suggesting that the yeast and human proteins are functionally conserved. Yng1- and Pho23-deficient cells also share some of these phenotypes. We demonstrated by yeast two-hybrid and coimmunoprecipitation tests that Yng2 interacts with Tra1, a component of histone acetyltransferase (HAT) complexes. We further demonstrated by coimmunoprecipitation that HA-Yng1, HA-Yng2, HA-Pho23, and HA-Ing1 are associated with HAT activities in yeast. Genetic and biochemical evidence indicate that the Yng2-associated HAT is Esa1, suggesting that Yng2 is a component of the NuA4 HAT complex. These studies suggest that the yeast Ing1-related proteins are involved in chromatin remodeling. They further suggest that these functions may be conserved in mammals and provide a possible mechanism for the human Ing1 candidate tumor suppressor.

Collaboration


Dive into the Robbie Loewith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Seeber

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Anna Waller

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce S. Edwards

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Chen

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge