Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robbie Waugh is active.

Publication


Featured researches published by Robbie Waugh.


Nature | 2012

A physical, genetic and functional sequence assembly of the barley genome

Klaus F. X. Mayer; Robbie Waugh; Peter Langridge; Timothy J. Close; Roger P. Wise; Andreas Graner; Takashi Matsumoto; Kazuhiro Sato; Alan H. Schulman; Ruvini Ariyadasa; Daniela Schulte; Naser Poursarebani; Ruonan Zhou; Burkhard Steuernagel; Martin Mascher; Uwe Scholz; Bu-Jun Shi; Kavitha Madishetty; Jan T. Svensson; Prasanna R. Bhat; Matthew J. Moscou; Josh Resnik; Gary J. Muehlbauer; Peter E. Hedley; Hui Liu; Jenny Morris; Zeev Frenkel; Avraham Korol; Hélène Bergès; Marius Felder

Barley (Hordeum vulgare L.) is among the world’s earliest domesticated and most important crop plants. It is diploid with a large haploid genome of 5.1 gigabases (Gb). Here we present an integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context. We developed a physical map of 4.98 Gb, with more than 3.90 Gb anchored to a high-resolution genetic map. Projecting a deep whole-genome shotgun assembly, complementary DNA and deep RNA sequence data onto this framework supports 79,379 transcript clusters, including 26,159 ‘high-confidence’ genes with homology support from other plant genomes. Abundant alternative splicing, premature termination codons and novel transcriptionally active regions suggest that post-transcriptional processing forms an important regulatory layer. Survey sequences from diverse accessions reveal a landscape of extensive single-nucleotide variation. Our data provide a platform for both genome-assisted research and enabling contemporary crop improvement.


Theoretical and Applied Genetics | 1997

Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs

Joanne Russell; John Fuller; Malcolm Macaulay; B. G. Hatz; A. Jahoor; W. Powell; Robbie Waugh

Abstract RFLPs, AFLPs, RAPDs and SSRs were used to determine the genetic relationships among 18 cultivated barley accessions and the results compared to pedigree relationships where these were available. All of the approaches were able to uniquely fingerprint each of the accessions. The four assays differed in the amount of polymorphism detected. For example, all 13 SSR primers were polymorphic, with an average of 5.7 alleles per primer set, while nearly 54% of the fragments generated using AFLPs were monomorphic. The highest diversity index was observed for AFLPs (0.937) and the lowest for RFLP (0.322). Principal co-ordinate analysis (PCoA) clearly separated the spring types from the winter types using RFLP and AFLP data with the two-row winter types forming an intermediate group. Only a small group of spring types clustered together using SSR data with the two-row and six-row winter varieties more widely dispersed. Direct comparisons between genetic similarity (GS) estimates revealed by each of the assays were measured by a number of approaches. Spearman rank correlation ranked over 70% of the pairwise comparisons between AFLPs and RFLPs in the same order. SSRs had the lowest values when compared to the other three assays. These results are discussed in terms of the choice of appropriate technology for different aspects of germplasm evaluation.


Molecular Genetics and Genomics | 1997

Genetic distribution of Bare–1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP)

Robbie Waugh; Karen McLean; Andrew J. Flavell; Stephen R. Pearce; Amar Kumar; Bill Thomas; W. Powell

Abstract Retrotransposons are present in high copy number in many plant genomes. They show a considerable degree of sequence heterogeneity and insertional polymorphism, both within and between species. We describe here a polymerase chain reaction (PCR)-based method which exploits this polymorphism for the generation of molecular markers in barley. The method produces amplified fragments containing a Bare–1-like retrotransposon long terminal repeat (LTR) sequence at one end and a flanking host restriction site at the other. The level of polymorphism is higher than that revealed by amplified fragment length polymorphism (AFLP) in barley. Segregation data for 55 fragments, which were polymorphic in a doubled haploid barley population, were analysed alongside an existing framework of some 400 other markers. The markers showed a widespread distribution over the seven linkage groups, which is consistent with the distribution of the Bare–1 class of retrotransposons in the barley genome based on in situ hybridisation data. The potential applicability of this method to the mapping of other multicopy sequences in plants is discussed.


Molecular Breeding | 1997

Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato

D. Milbourne; R. C. Meyer; J. E. Bradshaw; E. Baird; Nicky Bonar; Jim Provan; W. Powell; Robbie Waugh

The application of AFLPs, RAPDs and SSRs to examine genetic relationships in the primary northwestern European cultivated potato gene pool was investigated. Sixteen potato cultivars were genotyped using five AFLP primer combinations, 14 RAPD primers, and 17 database-derived SSR primer pairs. All three approaches successfully discriminated between the 16 cultivars using a minimum of one assay. Similarity matrices produced for each marker type on the basis of Nei and Li coefficients showed low correlations when compared with different statistical tests. Dendrograms were produced from these data for each marker system. The usefulness of each system was examined in terms of number of loci revealed (effective multiplex ratio, or EMR) and the amount of polymorphism detected (diversity index, or DI). AFLPs had the highest EMR, and SSRs the highest DI. A single parameter, marker index (MI), which is the product of DI and EMR, was used to evaluate the overall utility of each marker system. The use of these PCR-based marker systems in potato improvement and statutory applications is discussed.Abbreviations: PCR, polymerase chain reaction; AFLP, amplified fragment length polymorphism; RAPD, randomly amplified polymorphic DNA; DNA, deoxyribonucleic acid; EMR, effective multiplex ratio; DI, diversity index; MI, marker index; RFLP, restriction fragment length polymorphism.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties

Nils Rostoks; Luke Ramsay; Katrin MacKenzie; Linda Cardle; Prasanna R. Bhat; Mikeal L. Roose; Jan T. Svensson; Nils Stein; Rajeev K. Varshney; David Marshall; Andreas Graner; Timothy J. Close; Robbie Waugh

Genomewide association studies depend on the extent of linkage disequilibrium (LD), the number and distribution of markers, and the underlying structure in populations under study. Outbreeding species generally exhibit limited LD, and consequently, a very large number of markers are required for effective whole-genome association genetic scans. In contrast, several of the worlds major food crops are self-fertilizing inbreeding species with narrow genetic bases and theoretically extensive LD. Together these are predicted to result in a combination of low resolution and a high frequency of spurious associations in LD-based studies. However, inbred elite plant varieties represent a unique human-induced pseudooutbreeding population that has been subjected to strong selection for advantageous alleles. By assaying 1,524 genomewide SNPs we demonstrate that, after accounting for population substructure, the level of LD exhibited in elite northwest European barley, a typical inbred cereal crop, can be effectively exploited to map traits by using whole-genome association scans with several hundred to thousands of biallelic SNPs.


Heredity | 1992

Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers.

K. J. Chalmers; Robbie Waugh; Sprent Ji; Simons Aj; W. Powell

Gliricidia sepium and G. maculata are multi-purpose leguminous trees native to Central America and Mexico. Research programmes have been initiated to define the native distribution of Gliricidia and sample the spectrum of genetic variation. To date, there has been little systematic assessment of genetic variability in multi-purpose tree species. Accurate estimates of diversity between- and within-populations are considered a prerequisite for the optimization of sampling and breeding strategies. We have used a PCR-based polymorphic assay procedure (RAPDs) to monitor genetic variability in Gliricidia. Extensive genetic variability was detected between species and the variability was partitioned into between- and within-population components. On average, most (60 per cent) of the variation occurs between G. sepium populations but oligonucleotide primers differed in their capacity to detect variability between and within populations. Population-specific genetic markers were identified. RAPDs provide a cost-effective method for the precise and routine evaluation of variability and may be used to identify areas of maximum diversity. The approaches outlined have general applicability to a range of organisms and are discussed in relation to the exploitation of multi-purpose tree species of the tropics.


Molecular Genetics and Genomics | 1998

Isolation, characterisation and mapping of simple sequence repeat loci in potato

D. Milbourne; R. C. Meyer; A. J. Collins; Luke Ramsay; Christiane Gebhardt; Robbie Waugh

Solanum tuberosum L. DNA sequences containing simple sequence repeat (SSR) motifs were extracted from the EMBL database, cDNA and selectively enriched small-insert DNA libraries. Enrichment was achieved using either triplex affinity capture or single-strand hybridisation selection. One hundred and twelve primer pairs which successfully amplified products of the correct size from potato DNA were ultimately designed and synthesised. Ninety-eight of these revealed length polymorphisms in a panel of four diploid and two tetraploid clones, in agreement with the high information content of this class of markers which has been found in other species. All of the markers were assigned a quality score of 1–5 based on their potential usefulness. Eighty-nine loci from 65 of the primer pairs were located on two genetic linkage maps of potato by segregation analysis of the amplified alleles. Fifty-two of the SSRs were clearly single locus. The maps were aligned using 23 SSR primer pairs and 13 RFLP loci mapped in both populations. The markers described constitute a class which should replace Restriction Fragment Length Polymorphisms (RFLP) as the markers of choice for future genetic studies in potato. The sequences of the primers, together with other information on these markers are provided.


Nature Genetics | 2012

Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley

Jordi Comadran; Benjamin Kilian; Joanne Russell; Luke Ramsay; Nils Stein; Martin W. Ganal; Paul D. Shaw; Micha Bayer; W. T. B. Thomas; David Marshall; Peter E. Hedley; Alessandro Tondelli; N. Pecchioni; Enrico Francia; Viktor Korzun; Alexander Walther; Robbie Waugh

As early farming spread from the Fertile Crescent in the Near East around 10,000 years before the present, domesticated crops encountered considerable ecological and environmental change. Spring-sown crops that flowered without the need for an extended period of cold to promote flowering and day length–insensitive crops able to exploit the longer, cooler days of higher latitudes emerged and became established. To investigate the genetic consequences of adaptation to these new environments, we identified signatures of divergent selection in the highly differentiated modern-day spring and winter barleys. In one genetically divergent region, we identify a natural variant of the barley homolog of Antirrhinum CENTRORADIALIS (HvCEN) as a contributor to successful environmental adaptation. The distribution of HvCEN alleles in a large collection of wild and landrace accessions indicates that this involved selection and enrichment of preexisting genetic variants rather than the acquisition of mutations after domestication.


Theoretical and Applied Genetics | 1997

Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers

Satish Paul; Francis N Wachira; W. Powell; Robbie Waugh

Abstract AFLP markers were successfully employed to detect diversity and genetic differentiation among Indian and Kenyan populations of tea (Camellia sinensis (L.) O. Kuntze). Shannons index of diversity was used to partition the total phenotypic variation into between and within population components. On average, most of the diversity was detected within populations, with 79% of the variation being within and 21% being between populations of Indian and Kenyan tea. A dendrogram constructed on the basis of band sharing distinctly separated the three populations of tea into China type (sinensis), Assam type (assamica) and Cambod type (assamica ssp. lasiocalyx) in a manner consistent with the present taxonomy of tea, the known pedigree of some of the genotypes and their geographical origin. Principal coordinate (PCO) analysis grouped Assam genotypes both from India and Kenya supporting the suggestion that the Kenyan clones have been derived from collections made in this region. The China types were more dispersed on the PCO plot which is a reflection of wider genetic variation. As would be expected, clones collected from the same region exhibited less overall genetic variation. AFLP analysis discriminated all of the tested genotypes from India and Kenya, even those which cannot be distinguished on the basis of morphological and phenotypic traits.


Genetics | 2006

Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map.

Hans van Os; Sandra Andrzejewski; Erin Bakker; Imanol Barrena; Glenn J. Bryan; Bernard Caromel; Bilal Ghareeb; Edwige Isidore; Walter De Jong; Paul van Koert; Véronique Lefebvre; D. Milbourne; Enrique Ritter; Jeroen Rouppe van der Voort; Françoise Rousselle-Bourgeois; Joke van Vliet; Robbie Waugh; Richard G. F. Visser; Jaap Bakker; Herman J. van Eck

An ultradense genetic linkage map with >10,000 AFLP loci was constructed from a heterozygous diploid potato population. To our knowledge, this is the densest meiotic recombination map ever constructed. A fast marker-ordering algorithm was used, based on the minimization of the total number of recombination events within a given marker order in combination with genotyping error-detection software. This resulted in “skeleton bin maps,” which can be viewed as the most parsimonious marker order. The unit of distance is not expressed in centimorgans but in “bins.” A bin is a position on the genetic map with a unique segregation pattern that is separated from adjacent bins by a single recombination event. Putative centromeres were identified by a strong clustering of markers, probably due to cold spots for recombination. Conversely, recombination hot spots resulted in large intervals of up to 15 cM without markers. The current level of marker saturation suggests that marker density is proportional to physical distance and independent of recombination frequency. Most chromatids (92%) recombined once or never, suggesting strong chiasma interference. Absolute chiasma interference within a chromosome arm could not be demonstrated. Two examples of contig construction and map-based cloning have demonstrated that the marker spacing was in accordance with the expected physical distance: approximately one marker per BAC length. Currently, the markers are used for genetic anchoring of a physical map of potato to deliver a sequence-ready minimal tiling path of BAC contigs of specific chromosomal regions for the potato genome sequencing consortium (http://www.potatogenome.net).

Collaboration


Dive into the Robbie Waugh's collaboration.

Top Co-Authors

Avatar

W. Powell

National Institute of Agricultural Botany

View shared research outputs
Top Co-Authors

Avatar

Luke Ramsay

James Hutton Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnis Druka

James Hutton Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge