Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert A. Barclay is active.

Publication


Featured researches published by Robert A. Barclay.


Journal of Biological Chemistry | 2016

Exosomes from HIV-1-infected Cells Stimulate Production of Pro-inflammatory Cytokines through Trans-activating Response (TAR) RNA

Gavin Sampey; Mohammed Saifuddin; Angela Schwab; Robert A. Barclay; Shreya Punya; Myung-Chul Chung; Ramin M. Hakami; Mohammad Asad Zadeh; Benjamin Lepene; Zachary Klase; Nazira El-Hage; Mary Young; Sergey Iordanskiy; Fatah Kashanchi

HIV-1 infection results in a chronic illness because long-term highly active antiretroviral therapy can lower viral titers to an undetectable level. However, discontinuation of therapy rapidly increases virus burden. Moreover, patients under highly active antiretroviral therapy frequently develop various metabolic disorders, neurocognitive abnormalities, and cardiovascular diseases. We have previously shown that exosomes containing trans-activating response (TAR) element RNA enhance susceptibility of undifferentiated naive cells to HIV-1 infection. This study indicates that exosomes from HIV-1-infected primary cells are highly abundant with TAR RNA as detected by RT-real time PCR. Interestingly, up to a million copies of TAR RNA/μl were also detected in the serum from HIV-1-infected humanized mice suggesting that TAR RNA may be stable in vivo. Incubation of exosomes from HIV-1-infected cells with primary macrophages resulted in a dramatic increase of proinflammatory cytokines, IL-6 and TNF-β, indicating that exosomes containing TAR RNA could play a direct role in control of cytokine gene expression. The intact TAR molecule was able to bind to PKR and TLR3 effectively, whereas the 5′ and 3′ stems (TAR microRNAs) bound best to TLR7 and -8 and none to PKR. Binding of TAR to PKR did not result in its phosphorylation, and therefore, TAR may be a dominant negative decoy molecule in cells. The TLR binding through either TAR RNA or TAR microRNA potentially can activate the NF-κB pathway and regulate cytokine expression. Collectively, these results imply that exosomes containing TAR RNA could directly affect the proinflammatory cytokine gene expression and may explain a possible mechanism of inflammation observed in HIV-1-infected patients under cART.


Frontiers in Microbiology | 2016

Presence of Viral RNA and Proteins in Exosomes from Cellular Clones Resistant to Rift Valley Fever Virus Infection.

Noor A. Ahsan; Gavin Sampey; Ben Lepene; Yao Akpamagbo; Robert A. Barclay; Sergey Iordanskiy; Ramin M. Hakami; Fatah Kashanchi

Rift Valley Fever Virus (RVFV) is a RNA virus that belongs to the genus Phlebovirus, family Bunyaviridae. It infects humans and livestock and causes Rift Valley fever. RVFV is considered an agricultural pathogen by the USDA, as it can cause up to 100% abortion in cattle and extensive death of newborns. In addition, it is designated as Category A pathogen by the CDC and the NIAID. In some human cases of RVFV infection, the virus causes fever, ocular damage, liver damage, hemorrhagic fever, and death. There are currently limited options for vaccine candidates, which include the MP-12 and clone 13 versions of RVFV. Viral infections often deregulate multiple cellular pathways that contribute to replication and host pathology. We have previously shown that latent human immunodeficiency virus-1 (HIV-1) and human T-cell lymphotropic virus-1 (HTLV-1) infected cells secrete exosomes that contain short viral RNAs, limited number of genomic RNAs, and viral proteins. These exosomes largely target neighboring cells and activate the NF-κB pathway, leading to cell proliferation, and overall better viral replication. In this manuscript, we studied the effects of exosome formation from RVFV infected cells and their function on recipient cells. We initially infected cells, isolated resistant clones, and further purified using dilution cloning. We then characterized these cells as resistant to new RVFV infection, but sensitive to other viral infections, including Venezuelan Equine Encephalitis Virus (VEEV). These clones contained normal markers (i.e., CD63) for exosomes and were able to activate the TLR pathway in recipient reporter cells. Interestingly, the exosome rich preparations, much like their host cell, contained viral RNA (L, M, and S genome). The RNAs were detected using qRT-PCR in both parental and exosomal preparations as well as in CD63 immunoprecipitates. Viral proteins such as N and a modified form of NSs were present in some of these exosomes. Finally, treatment of recipient cells (T-cells and monocytic cells) showed drastic rate of apoptosis through PARP cleavage and caspase 3 activation from some but not all exosome enriched preparations. Collectively, these data suggest that exosomes from RVFV infected cells alter the dynamics of the immune cells and may contribute to pathology of the viral infection.


Frontiers in Microbiology | 2016

Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction

Michelle L. Pleet; Allison Mathiesen; Catherine DeMarino; Yao Akpamagbo; Robert A. Barclay; Angela Schwab; Sergey Iordanskiy; Gavin Sampey; Benjamin Lepene; Sergei Nekhai; M. J. Aman; Fatah Kashanchi

Ebola virus (EBOV) is an enveloped, ssRNA virus from the family Filoviridae capable of causing severe hemorrhagic fever with up to 80–90% mortality rates. The most recent outbreak of EBOV in West Africa starting in 2014 resulted in over 11,300 deaths; however, long-lasting persistence and recurrence in survivors has been documented, potentially leading to further transmission of the virus. We have previously shown that exosomes from cells infected with HIV-1, HTLV-1 and Rift Valley Fever virus are able to transfer viral proteins and non-coding RNAs to naïve recipient cells, resulting in an altered cellular activity. In the current manuscript, we examined the effect of Ebola structural proteins VP40, GP, NP and VLPs on recipient immune cells, as well as the effect of exosomes containing these proteins on naïve immune cells. We found that VP40-transfected cells packaged VP40 into exosomes, and that these exosomes were capable of inducing apoptosis in recipient immune cells. Additionally, we show that presence of VP40 within parental cells or in exosomes delivered to naïve cells could result in the regulation of RNAi machinery including Dicer, Drosha, and Ago 1, which may play a role in the induction of cell death in recipient immune cells. Exosome biogenesis was regulated by VP40 in transfected cells by increasing levels of ESCRT-II proteins EAP20 and EAP45, and exosomal marker proteins CD63 and Alix. VP40 was phosphorylated by Cdk2/Cyclin complexes at Serine 233 which could be reversed with r-Roscovitine treatment. The level of VP40-containing exosomes could also be regulated by treated cells with FDA-approved Oxytetracycline. Additionally, we utilized novel nanoparticles to safely capture VP40 and other viral proteins from Ebola VLPs spiked into human samples using SDS/reducing agents, thus minimizing the need for BSL-4 conditions for most downstream assays. Collectively, our data indicates that VP40 packaged into exosomes may be responsible for the deregulation and eventual destruction of the T-cell and myeloid arms of the immune system (bystander lymphocyte apoptosis), allowing the virus to replicate to high titers in the immunocompromised host. Moreover, our results suggest that the use of drugs such as Oxytetracycline to modulate the levels of exosomes exiting EBOV-infected cells may be able to prevent the devastation of the adaptive immune system and allow for an improved rate of survival.


Journal of Biological Chemistry | 2017

Exosomes from uninfected cells activate transcription of latent HIV-1

Robert A. Barclay; Angela Schwab; Catherine DeMarino; Yao Akpamagbo; Benjamin Lepene; Seble Kassaye; Sergey Iordanskiy; Fatah Kashanchi

HIV-1 infection causes AIDS, infecting millions worldwide. The virus can persist in a state of chronic infection due to its ability to become latent. We have previously shown a link between HIV-1 infection and exosome production. Specifically, we have reported that exosomes transport viral proteins and RNA from infected cells to neighboring uninfected cells. These viral products could then elicit an innate immune response, leading to activation of the Toll-like receptor and NF-κB pathways. In this study, we asked whether exosomes from uninfected cells could activate latent HIV-1 in infected cells. We observed that irrespective of combination antiretroviral therapy, both short- and long-length viral transcripts were increased in wild-type HIV-1–infected cells exposed to purified exosomes from uninfected cells. A search for a possible mechanism for this finding revealed that the exosomes increase RNA polymerase II loading onto the HIV-1 promoter in the infected cells. These viral transcripts, which include trans-activation response (TAR) RNA and a novel RNA that we termed TAR-gag, can then be packaged into exosomes and potentially be exported to neighboring uninfected cells, leading to increased cellular activation. To better decipher the exosome release pathways involved, we used siRNA to suppress expression of ESCRT (endosomal sorting complex required for transport) proteins and found that ESCRT II and IV significantly control exosome release. Collectively, these results imply that exosomes from uninfected cells activate latent HIV-1 in infected cells and that true transcriptional latency may not be possible in vivo, especially in the presence of combination antiretroviral therapy.


Virology | 2017

The Human Immunodeficiency Virus 1 ASP RNA promotes viral latency by recruiting the Polycomb Repressor Complex 2 and promoting nucleosome assembly

Juan Carlos Zapata; Federica Campilongo; Robert A. Barclay; Catherine DeMarino; Maria Iglesias-Ussel; Fatah Kashanchi; Fabio Romerio

Various epigenetic marks at the HIV-1 5′LTR suppress proviral expression and promote latency. Cellular antisense transcripts known as long noncoding RNAs (lncRNAs) recruit the polycomb repressor complex 2 (PRC2) to gene promoters, which catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3), thus promoting nucleosome assembly and suppressing gene expression. We found that an HIV-1 antisense transcript expressed from the 3′LTR and encoding the antisense protein ASP promotes proviral latency. Expression of ASP RNA reduced HIV-1 replication in Jurkat cells. Moreover, ASP RNA expression promoted the establishment and maintenance of HIV-1 latency in Jurkat E4 cells. We show that this transcript interacts with and recruits PRC2 to the HIV-1 5′LTR, increasing accumulation of the suppressive epigenetic mark H3K27me3, while reducing RNA Polymerase II and thus proviral transcription. Altogether, our results suggest that the HIV-1 ASP transcript promotes epigenetic silencing of the HIV-1 5′LTR and proviral latency through the PRC2 pathway.


Scientific Reports | 2018

Antiretroviral Drugs Alter the Content of Extracellular Vesicles from HIV-1-Infected Cells

Catherine DeMarino; Michelle L. Pleet; Maria Cowen; Robert A. Barclay; Yao Akpamagbo; James Erickson; Nicaise Ndembi; Manhattan Charurat; Jibreel Jumare; Sunday A Bwala; Peter Alabi; Max Hogan; Archana Gupta; Nicole Noren Hooten; Michele K. Evans; Benjamin Lepene; Weidong Zhou; Massimo Caputi; Fabio Romerio; Walter Royal; Nazira El-Hage; Lance A. Liotta; Fatah Kashanchi

To date, the most effective treatment of HIV-1 is a combination antiretroviral therapy (cART), which reduces viral replication and reverses pathology. We investigated the effect of cART (RT and protease inhibitors) on the content of extracellular vesicles (EVs) released from HIV-1-infected cells. We have previously shown that EVs contain non-coding HIV-1 RNA, which can elicit responses in recipient cells. In this manuscript, we show that TAR RNA levels demonstrate little change with the addition of cART treatment in cell lines, primary macrophages, and patient biofluids. We determined possible mechanisms involved in the selective packaging of HIV-1 RNA into EVs, specifically an increase in EV-associated hnRNP A2/B1. More recent experiments have shown that several other FDA-approved drugs have the ability to alter the content of exosomes released from HIV-1-infected cells. These findings on cART-altered EV content can also be applied to general viral inhibitors (interferons) which are used to treat other chronic infections. Additionally, we describe unique mechanisms of ESCRT pathway manipulation by antivirals, specifically the targeting of VPS4. Collectively, these data imply that, despite antiretroviral therapy, EVs containing viral products are continually released and may cause neurocognitive and immunological dysfunction.


The Journal of Infectious Diseases | 2018

Ebola Virus VP40 Modulates Cell Cycle and Biogenesis of Extracellular Vesicles

Michelle L. Pleet; James Erickson; Catherine DeMarino; Robert A. Barclay; Maria Cowen; Benjamin Lepene; Janie Liang; Jens H. Kuhn; Laura I. Prugar; Spencer W. Stonier; John M. Dye; Weidong Zhou; Lance A. Liotta; M. Javad Aman; Fatah Kashanchi

Abstract Background Ebola virus (EBOV) mainly targets myeloid cells; however, extensive death of T cells is often observed in lethal infections. We have previously shown that EBOV VP40 in exosomes causes recipient immune cell death. Methods Using VP40-producing clones, we analyzed donor cell cycle, extracellular vesicle (EV) biogenesis, and recipient immune cell death. Transcription of cyclin D1 and nuclear localization of VP40 were examined via kinase and chromatin immunoprecipitation assays. Extracellular vesicle contents were characterized by mass spectrometry, cytokine array, and western blot. Biosafety level-4 facilities were used for wild-type Ebola virus infection studies. Results VP40 EVs induced apoptosis in recipient T cells and monocytes. VP40 clones were accelerated in growth due to cyclin D1 upregulation, and nuclear VP40 was found bound to the cyclin D1 promoter. Accelerated cell cycling was related to EV biogenesis, resulting in fewer but larger EVs. VP40 EV contents were enriched in ribonucleic acid-binding proteins and cytokines (interleukin-15, transforming growth factor-β1, and interferon-γ). Finally, EBOV-infected cell and animal EVs contained VP40, nucleoprotein, and glycoprotein. Conclusions Nuclear VP40 upregulates cyclin D1 levels, resulting in dysregulated cell cycle and EV biogenesis. Packaging of cytokines and EBOV proteins into EVs from infected cells may be responsible for the decimation of immune cells during EBOV pathogenesis.


Archive | 2017

Isolation of Exosomes from HTLV-Infected Cells

Robert A. Barclay; Michelle L. Pleet; Yao Akpamagbo; Kinza Noor; Allison Mathiesen; Fatah Kashanchi

Exosomes are small vesicles, approximately 30-100 nm in diameter, that transport various cargos, such as proteins and nucleic acids, between cells. It has been previously shown that exosomes can also transport viral proteins, such as the HTLV protein Tax, and viral RNAs, potentially contributing to disease pathogenesis. Therefore, it is important to understand their impact on recipient cells. Here, we describe methods of isolating and purifying exosomes from cell culture or tissue through ultracentrifugation, characterizing exosomes by surface biomarkers, and assays that evaluate the effect of exosomes on cells.


Current Pharmaceutical Design | 2017

HIV-1 Transcription Inhibitors Increase the Synthesis of Viral Non-Coding RNA that Contribute to Latency

Yao Akpamagbo; Catherine DeMarino; Michelle L. Pleet; Angela Schwab; Myosotys Rodriguez; Robert A. Barclay; Gavin Sampey; Sergey Iordanskiy; Nazira El-Hage; Fatah Kashanchi

BACKGROUND HIV-1 can be preserved in long-lived resting CD4+ T- and myeloid cells, forming a viral reservoir in tissues of the infected individuals. Infected patients primarily receive cART, which, to date, is the most efficient treatment against HIV/AIDS. However, the major problem in the eradication of HIV-1 from patients is the lack of therapeutic approaches to recognize the latent HIV-1 provirus and to eliminate latently infected cells. RESULTS In the current review, we describe the effect of HIV-1 transcriptional inhibitors CR8#13 and F07#13 using a series of in vitro and in vivo assays. We found that both of these compounds regulate p-TEFb in infected cells, and terminate transcription at two sites, either at the LTR or early gag regions. The resulting short transcripts are termed TAR and TAR-gag, respectively. These nascent RNAs are capable of binding to SWI/SNF components, including mSin3A/HDAC-1 complex and potentially serve as a scaffolding RNA. Both TAR and TAR-gag are detected as large complexes from treated infected cells when using chromatography. Both transcripts are non-coding in T-cells and monocytes, and potentially recruit suppressive factors along with RNAbinding proteins to the DNA resulting in Transcriptional Gene Silencing (TGS). Finally, these compounds suppress activated virus when using a latent humanized mouse model. CONCLUSION Collectively, these data implicate transcription inhibitors as regulators of the viral promoter through short non-coding RNAs and chromatin remodeling factors. These RNAs give specificity toward either viral DNA and/or nascent mRNA when functioning as TGS.


Frontiers in Microbiology | 2018

Corrigendum: Ebola VP40 in Exosomes Can Cause Immune Cell Dysfunction

Michelle L. Pleet; Allison Mathiesen; Catherine DeMarino; Yao Akpamagbo; Robert A. Barclay; Angela Schwab; Sergey Iordanskiy; Gavin Sampey; Benjamin Lepene; Philipp A. Ilinykh; Alexander Bukreyev; Sergei Nekhai; M. Javad Aman; Fatah Kashanchi

Collaboration


Dive into the Robert A. Barclay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gavin Sampey

George Mason University

View shared research outputs
Top Co-Authors

Avatar

Allison Mathiesen

Eastern Virginia Medical School

View shared research outputs
Top Co-Authors

Avatar

Nazira El-Hage

Florida International University

View shared research outputs
Researchain Logo
Decentralizing Knowledge