Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert A. Benson is active.

Publication


Featured researches published by Robert A. Benson.


The FASEB Journal | 2012

Antigen depot is not required for alum adjuvanticity

Sharon Hutchison; Robert A. Benson; Vivienne B. Gibson; Abigail H. Pollock; Paul Garside; James M. Brewer

Alum adjuvants have been in continuous clinical use for more than 80 yr. While the prevailing theory has been that depot formation and the associated slow release of antigen and/or inflammation are responsible for alum enhancement of antigen presentation and subsequent T‐ and B‐cell responses, this has never been formally proven. To examine antigen persistence, we used the chimeric fluorescent protein EαGFP, which allows assessment of antigen presentation in situ, using the Y‐Ae antibody. We demonstrate that alum and/or CpG adjuvants induced similar uptake of antigen, and in all cases, GFP signal did not persist beyond 24 h in draining lymph node antigen‐presenting cells. Antigen presentation was first detectable on B cells within 6‐12 h of antigen administration, followed by conventional dendritic cells (DCs) at 12‐24 h, then finally plasmacytoid DCs at 48 h or later. Again, alum and/or CpG adjuvants did not have an effect on the magnitude or sequence of this response; furthermore, they induced similar antigen‐specific T‐cell activation in vivo. Notably, removal of the injection site and associated alum depot, as early as 2 h after administration, had no appreciable effect on antigen‐specific T‐and B‐cell responses. This study clearly rules out a role for depot formation in alum adjuvant activity.—Hutchison, S., Benson, R. A., Gibson, V. B., Pollock, A. H., Garside, P., Brewer, J. M. Antigen depot is not required for alum adjuvanticity. FASEB J. 26, 1272‐1279 (2012). www.fasebj.org


Journal of Immunology | 2009

Plasmacytoid dendritic cells regulate breach of self-tolerance in autoimmune arthritis

Sarah L. Jongbloed; Robert A. Benson; Mohammed B. Nickdel; Paul Garside; Iain B. McInnes; James M. Brewer

Achieving remission in rheumatoid arthritis (RA) remains elusive despite current biological therapeutics. Consequently, interest has increased in strategies to re-establish immune tolerance to provide long-term disease suppression. Although dendritic cells (DC) are prime candidates in initiating autoreactive T cell responses, and their presence within the synovial environment suggests a role in generation and maintenance of autoreactive, synovial T cell responses, their functional importance remains unclear. We investigated the contribution made by plasmacytoid DCs (pDCs) in the spontaneous breach of tolerance to arthritis-related self proteins, including rheumatoid factor, citrullinated peptide, and type II collagen observed in a novel arthritis model. Selective pDC depletion in vivo enhanced the severity of articular pathology and enhanced T and B cell autoimmune responses against type II collagen. pDC may offer a net anti-inflammatory function in the context of articular breach of tolerance. Such data will be vital in informing DC modulatory/therapeutic approaches.


Journal of Immunology | 2010

Abatacept Limits Breach of Self-Tolerance in a Murine Model of Arthritis via Effects on the Generation of T Follicular Helper Cells

Andrew M. Platt; Vivienne B. Gibson; Agapitos Patakas; Robert A. Benson; Steven G. Nadler; James M. Brewer; Iain B. McInnes; Paul Garside

Abatacept modulates CD28-mediated T cell costimulation and is efficacious in the treatment of rheumatoid arthritis (RA). Its mechanism of action has not been fully elucidated but will likely reveal critical pathologic pathways in RA. We show that abatacept substantially modulated Ag-specific T and B cell responses in vivo. Ag-specific T cell proliferation was reduced, and the acquisition of an activated phenotype, characterized by upregulation of CD69, OX40, ICOS, and programmed death-1 and downregulation of CD62L, was suppressed. Furthermore, abatacept suppressed the production of inflammatory cytokines, such as IFN-γ and IL-17. These effects were associated with a failure of Ag-specific T cells to acquire the CXCR5+ICOS+ T follicular helper cell phenotype. This, in turn, led to a failure of these cells to enter B cell follicles, resulting in reduced specific Ab responses, despite normal B cell clonal expansion. To test the pathologic significance of this, we used a novel model of RA associated with breach of self-tolerance to self-Ag and demonstrated that abatacept prevented the emergence of self-reactivity. Thus, CD28-dependent signaling is required for optimal T follicular helper cell maturation and expansion, and its inhibition prevents loss of self-tolerance in a model of articular pathology. Thus, we provide a novel mode of action for abatacept with profound implications for its potential usefulness in early inflammatory arthropathies associated with autoantibody expression.


Immunology Letters | 2012

Alum increases antigen uptake, reduces antigen degradation and sustains antigen presentation by DCs in vitro

Tirth R. Ghimire; Robert A. Benson; Paul Garside; James M. Brewer

Highlights ► The EαGFP/YAe system can be used to study the impact of alum on antigen uptake and presentation by DCs. ► Alum acts as an antigen delivery system. ► Alum slows down protein degradation in DCs. ► Alum eventually enhances magnitude and duration of expression of peptide/MHC complexes on the DC surface.


eLife | 2016

The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes

Paul Capewell; Christelle Cren-Travaillé; Francesco Marchesi; Pamela Johnston; Caroline Clucas; Robert A. Benson; Taylor-Anne Gorman; Estefania Calvo-Alvarez; Aline Crouzols; Grégory Jouvion; Vincent Jamonneau; William Weir; M. Lynn Stevenson; Kerry O'Neill; Anneli Cooper; Nono-raymond Kuispond Swar; Bruno Bucheton; Dieudonné Mumba Ngoyi; Paul Garside; Brice Rotureau; Annette MacLeod

The role of mammalian skin in harbouring and transmitting arthropod-borne protozoan parasites has been overlooked for decades as these pathogens have been regarded primarily as blood-dwelling organisms. Intriguingly, infections with low or undetected blood parasites are common, particularly in the case of Human African Trypanosomiasis caused by Trypanosoma brucei gambiense. We hypothesise, therefore, the skin represents an anatomic reservoir of infection. Here we definitively show that substantial quantities of trypanosomes exist within the skin following experimental infection, which can be transmitted to the tsetse vector, even in the absence of detectable parasitaemia. Importantly, we demonstrate the presence of extravascular parasites in human skin biopsies from undiagnosed individuals. The identification of this novel reservoir requires a re-evaluation of current diagnostic methods and control policies. More broadly, our results indicate that transmission is a key evolutionary force driving parasite extravasation that could further result in tissue invasion-dependent pathology. DOI: http://dx.doi.org/10.7554/eLife.17716.001


Analytical Chemistry | 2012

Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging.

Ross McQueenie; Ross Stevenson; Robert A. Benson; Neil MacRitchie; Iain B. McInnes; Pasquale Maffia; Karen Faulds; Duncan Graham; James M. Brewer; Paul Garside

The detection of inflammatory changes is a key aim for the early diagnosis and treatment of several autoimmune, infectious, and metastatic diseases. While surface-enhanced Raman scattering (SERS) has the capability to provide noninvasive, in vivo imaging at sufficient depth to achieve this goal, this approach has not been exploited in the study of inflammation. SERS-active nanoparticles were coded with a unique Raman signal that was protected under a wide range of conditions and stimuli. To detect early-stage inflammation, gold nanoparticle clusters containing Raman-active molecules were conjugated to intercellular adhesion molecule 1- (ICAM-1-) specific monoclonal antibodies. SERS allowed noninvasive measurement of ICAM-1 expression in vivo with twice the sensitivity of two-photon fluorescence. This is the first time SERS has been used for in vivo detection of inflammation and is a major advance in the ever-growing toolkit of approaches for use in noninvasive, next-generation in vivo imaging.


Journal of Immunology | 2010

Identifying the Cells Breaching Self-Tolerance in Autoimmunity

Robert A. Benson; Agapitos Patakas; Paola Conigliaro; Catherine M. Rush; Paul Garside; Iain B. McInnes; James M. Brewer

Activation of auto-reactive T cells by activated dendritic cells (DCs) presenting self-Ag is widely assumed to be the precipitating event in the development of autoimmune disease. However, despite such widely held preconceptions, supporting data are scarce and subjective, particularly in experimental arthropathy. We have adapted a novel murine model of breach of self-tolerance allowing evaluation of the contribution of endogenous DCs to the development of autoimmune responses and disease. For the first time, we reveal the critical role played by conventional DCs, and the timing and location of this process. We further demonstrate the importance of this finding by clinically relevant, therapeutic manipulation of conventional DC function, resulting in decreased autoimmune phenotype and disease severity.


eLife | 2015

Antigen presentation kinetics control T cell/dendritic cell interactions and follicular helper T cell generation in vivo

Robert A. Benson; Megan K. L. MacLeod; Benjamin G. Hale; Agapitos Patakas; Paul Garside; James M. Brewer

The production of high affinity, class switched antibodies produced by B cells hinges on the effective differentiation of T follicular helper (Tfh) cells. Here we define conditions specifically enhancing Tfh differentiation and providing protection in a model of influenza infection. Tfh responses were associated with prolonged antigen presentation by dendritic cells (DCs), which maintained T cell/DC interactions into stage 3 (>72 hr) of activation. Blocking stage 3 interactions ablated Tfh generation, demonstrating a causal link between T cell-DC behaviour and functional outcomes. The current data therefore explain how duration of antigen presentation affects the dynamics of T cell-DC interactions and consequently determine Tfh cell differentiation in the developing immune response. DOI: http://dx.doi.org/10.7554/eLife.06994.001


Annals of the Rheumatic Diseases | 2009

Dissecting the contribution of innate and antigen-specific pathways to the breach of self-tolerance observed in a murine model of arthritis

Mohammad B. Nickdel; Paola Conigliaro; Guido Valesini; Sharon Hutchison; Robert A. Benson; Robert V. Bundick; Andrew J. Leishman; Iain B. McInnes; James M. Brewer; Paul Garside

Background: The relative roles of innate immunity and antigen-specific T cells in rheumatoid arthritis remain controversial. Previous studies demonstrated that T-helper type 1 cells of irrelevant antigen specificity (ovalbumin) induced a transient arthritis in BALB/c mice, which recapitulates many of the pre-articular and articular features of human disease and is associated with the emergence of autoreactive T and B-cell responses to joint-specific antigens. However, the mechanisms underlying this phenomenon were unclear. Objectives: The aim of this study was to dissect the relative contribution of innate and heterologous antigen-specific pathways to the breach of self-tolerance and pathology observed in this model and how this may result from modified T and B-cell interactions. Methods: To address this issue, experimental arthritis was elicited either by a non-specific inflammatory stimulus alone, by activation of T cells of an irrelevant specificity or a combination of both. Results: The non-specific inflammatory response generated by lipopolysaccharide led to articular inflammation and cartilage erosion, but did not break tolerance to joint-specific antigens. In contrast, local activation of T cells of an irrelevant specificity produced a similar pathological picture but, in addition, induced T-cell responses to unrelated joint-specific antigens with associated activation of autoreactive B cells. These effects could be further potentiated by the addition of lipopolysaccharide. Conclusion: These data demonstrate that non-specific inflammation alone is insufficient to breach self-tolerance. In contrast, T cells of an irrelevant specificity, when triggered locally in an antigen-specific manner, can breach self-tolerance leading to arthritis and autoantibody production, which can then be amplified in a non-specific manner.


Autoimmunity | 2010

The type I IFN system in rheumatoid arthritis

Paola Conigliaro; Carlo Perricone; Robert A. Benson; Paul Garside; James M. Brewer; Roberto Perricone; Guido Valesini

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disorder characterized by joint inflammation, immune cell infiltration of the synovia, and cartilage/bone destruction. Despite noteworthy progress in the treatment of RA in recent years, many patients remain refractory to current therapeutic strategies that target either the adaptive immune system or mediators of the innate system. Type I interferons (IFNs) play a significant role in regulation of the innate immune system, originally being discovered as part of intracellular immune defence against viral infection. IFNs are pleiotropic cytokines, mediating both immunostimulatory and immunosuppressive effects. IFN-alpha and beta have been detected in RA synovial fluid and tissue and subsequent therapeutic approaches using type I IFN in murine models of arthritis and in human RA have produced different and controversial results. Great interest has been directed toward principally plasmacytoid dendritic cells (pDCs), although also toward myeloid dendritic cells, as sources of type I IFN. Furthermore, manipulation of DC populations in murine RA models demonstrated that pDCs could suppress the development of arthritis and autoimmunity and may offer an attractive therapy for T-cell-mediated autoimmune diseases. Finally, dendritic cells (DCs) are vehicles for the delivery of therapeutic vaccines, and clinical trials are ongoing in RA with “tolerogenic” DC populations. Further, studies on animal models of RA will elucidate how IFN and DCs contribute to the establishment of autoimmune arthritis and the potential for manipulation of these cell populations and products to re-establish the immune tolerance.

Collaboration


Dive into the Robert A. Benson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Conigliaro

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Pasquale Maffia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge