Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert A. Cramer is active.

Publication


Featured researches published by Robert A. Cramer.


PLOS Pathogens | 2007

Transcriptional Regulation of Chemical Diversity in Aspergillus fumigatus by LaeA

Robyn M. Perrin; Natalie D. Fedorova; Jin Woo Bok; Robert A. Cramer; Jennifer R. Wortman; H. Stanley Kim; William C. Nierman; Nancy P. Keller

Secondary metabolites, including toxins and melanins, have been implicated as virulence attributes in invasive aspergillosis. Although not definitively proved, this supposition is supported by the decreased virulence of an Aspergillus fumigatus strain, ΔlaeA, that is crippled in the production of numerous secondary metabolites. However, loss of a single LaeA-regulated toxin, gliotoxin, did not recapitulate the hypovirulent ΔlaeA pathotype, thus implicating other toxins whose production is governed by LaeA. Toward this end, a whole-genome comparison of the transcriptional profile of wild-type, ΔlaeA, and complemented control strains showed that genes in 13 of 22 secondary metabolite gene clusters, including several A. fumigatus–specific mycotoxin clusters, were expressed at significantly lower levels in the ΔlaeA mutant. LaeA influences the expression of at least 9.5% of the genome (943 of 9,626 genes in A. fumigatus) but positively controls expression of 20% to 40% of major classes of secondary metabolite biosynthesis genes such as nonribosomal peptide synthetases (NRPSs), polyketide synthases, and P450 monooxygenases. Tight regulation of NRPS-encoding genes was highlighted by quantitative real-time reverse-transcription PCR analysis. In addition, expression of a putative siderophore biosynthesis NRPS (NRPS2/sidE) was greatly reduced in the ΔlaeA mutant in comparison to controls under inducing iron-deficient conditions. Comparative genomic analysis showed that A. fumigatus secondary metabolite gene clusters constitute evolutionarily diverse regions that may be important for niche adaptation and virulence attributes. Our findings suggest that LaeA is a novel target for comprehensive modification of chemical diversity and pathogenicity.


Nature Reviews Microbiology | 2007

Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections

William J. Steinbach; Jennifer L. Reedy; Robert A. Cramer; John R. Perfect; Joseph Heitman

The number of immunocompromised patients with invasive fungal infections continues to increase and new antifungal therapies are not keeping pace with the growing incidence of these infections and their associated mortality. Calcineurin inhibition is currently used to exert effective immunosuppression following organ transplantation and in treating various other conditions. However, the calcineurin pathway is also intricately involved in the growth and pathogenesis of the three major fungal pathogens of humans, Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus, and the exploitation of fungal calcineurin pathways holds great promise for the future development of novel antifungal agents. This Review summarizes our current understanding of calcineurin biology in these fungal species, and its exciting potential role in treating invasive fungal infections.


Eukaryotic Cell | 2006

Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus.

William J. Steinbach; Robert A. Cramer; B. Zachary Perfect; Yohannes G. Asfaw; Theodor C. Sauer; Laura K. Najvar; William R. Kirkpatrick; Thomas F. Patterson; Daniel K. Benjamin; Joseph Heitman; John R. Perfect

ABSTRACT Calcineurin is implicated in a myriad of human diseases as well as homeostasis and virulence in several major human pathogenic microorganisms. The fungus Aspergillus fumigatus is a leading cause of infectious death in the rapidly expanding immunocompromised patient population. Current antifungal treatments for invasive aspergillosis are often ineffective, and novel therapeutic approaches are urgently needed. We demonstrate that a mutant of A. fumigatus lacking the calcineurin A (cnaA) catalytic subunit exhibited defective hyphal morphology related to apical extension and polarized growth, which resulted in drastically decreased filamentation. The ΔcnaA mutant lacked the extensive lattice of invading hyphae seen with the wild-type and complemented strains. Sporulation was also affected in the ΔcnaA mutant, including morphological conidial defects with the absence of surface rodlets and the added presence of disjunctors creating long conidial chains. Infection with the ΔcnaA mutant in several distinct animal models with different types of immunosuppression and inoculum delivery led to a profound attenuation of pathogenicity compared to infection with the wild-type and complemented strains. Lung tissue from animals infected with the ΔcnaA mutant showed a complete absence of hyphae, in contrast to tissue from animals infected with the wild-type and complemented strains. Quantitative fungal burden and pulmonary infarct scoring confirmed these findings. Our results support the clinical observation that substantially decreasing fungal growth can prevent disease establishment and decrease mortality. Our findings reveal that calcineurin appears to play a globally conserved role in the virulence of several pathogenic fungi and yet plays specialized roles in each and can be an excellent target for therapeutic intervention.


PLOS Pathogens | 2008

A Sterol-Regulatory Element Binding Protein Is Required for Cell Polarity, Hypoxia Adaptation, Azole Drug Resistance, and Virulence in Aspergillus fumigatus

Sven D. Willger; Srisombat Puttikamonkul; Kwang-Hyung Kim; James B. Burritt; Nora Grahl; Laurel Metzler; Robert J. Barbuch; Martin Bard; Christopher B. Lawrence; Robert A. Cramer

At the site of microbial infections, the significant influx of immune effector cells and the necrosis of tissue by the invading pathogen generate hypoxic microenvironments in which both the pathogen and host cells must survive. Currently, whether hypoxia adaptation is an important virulence attribute of opportunistic pathogenic molds is unknown. Here we report the characterization of a sterol-regulatory element binding protein, SrbA, in the opportunistic pathogenic mold, Aspergillus fumigatus. Loss of SrbA results in a mutant strain of the fungus that is incapable of growth in a hypoxic environment and consequently incapable of causing disease in two distinct murine models of invasive pulmonary aspergillosis (IPA). Transcriptional profiling revealed 87 genes that are affected by loss of SrbA function. Annotation of these genes implicated SrbA in maintaining sterol biosynthesis and hyphal morphology. Further examination of the SrbA null mutant consequently revealed that SrbA plays a critical role in ergosterol biosynthesis, resistance to the azole class of antifungal drugs, and in maintenance of cell polarity in A. fumigatus. Significantly, the SrbA null mutant was highly susceptible to fluconazole and voriconazole. Thus, these findings present a new function of SREBP proteins in filamentous fungi, and demonstrate for the first time that hypoxia adaptation is likely an important virulence attribute of pathogenic molds.


Eukaryotic Cell | 2006

Disruption of a Nonribosomal Peptide Synthetase in Aspergillus fumigatus Eliminates Gliotoxin Production

Robert A. Cramer; Michael P. Gamcsik; Rhea M. Brooking; Laura K. Najvar; William R. Kirkpatrick; Thomas F. Patterson; Carl J. Balibar; John R. Graybill; John R. Perfect; Soman N. Abraham; William J. Steinbach

ABSTRACT The fungal secondary metabolite gliotoxin produced by Aspergillus fumigatus has been hypothesized to be important in the development of invasive aspergillosis. In this study, we addressed this hypothesis by disrupting a nonribosomal peptide synthetase (NRPS) (encoded by gliP) predicted to be involved in gliotoxin production. Mutants with a disrupted gliP locus failed to produce gliotoxin, which confirmed the role of the NRPS encoded by gliP in gliotoxin biosynthesis. We found no morphological, developmental, or physiological defects in ΔgliP mutant strains. In addition, disruption of gliP resulted in down regulation of gene expression in the gliotoxin biosynthesis gene cluster, which was restored with addition of exogenous gliotoxin. This interesting result suggests a role for gliotoxin in regulating its own production. Culture filtrates from the ΔgliP mutant were unable to inhibit ionomycin-dependent degranulation of mast cells, suggesting a role for gliotoxin in suppressing mast cell degranulation and possibly in disease development. However, the ΔgliP mutant did not have an impact on survival or tissue burden in a murine inhalational model of invasive aspergillosis. This result suggests that gliotoxin is not required for virulence in an immunosuppressed host with an invasive pulmonary infection.


PLOS ONE | 2010

Iridovirus and Microsporidian Linked to Honey Bee Colony Decline

Jerry J. Bromenshenk; Colin B. Henderson; Charles H. Wick; Michael F. Stanford; Alan W. Zulich; Rabih E. Jabbour; Samir V. Deshpande; Patrick E. McCubbin; Robert A. Seccomb; Phillip M. Welch; Trevor Williams; David Firth; Evan W. Skowronski; Margaret M. Lehmann; S. L. Bilimoria; Joanna Gress; Kevin W. Wanner; Robert A. Cramer

Background In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. Methodology/Principal Findings We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006–2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. Conclusions/Significance These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.


PLOS Pathogens | 2011

In vivo Hypoxia and a Fungal Alcohol Dehydrogenase Influence the Pathogenesis of Invasive Pulmonary Aspergillosis

Nora Grahl; Srisombat Puttikamonkul; Jeffrey M. Macdonald; Michael P. Gamcsik; Lisa Y. Ngo; Tobias M. Hohl; Robert A. Cramer

Currently, our knowledge of how pathogenic fungi grow in mammalian host environments is limited. Using a chemotherapeutic murine model of invasive pulmonary aspergillosis (IPA) and 1H-NMR metabolomics, we detected ethanol in the lungs of mice infected with Aspergillus fumigatus. This result suggests that A. fumigatus is exposed to oxygen depleted microenvironments during infection. To test this hypothesis, we utilized a chemical hypoxia detection agent, pimonidazole hydrochloride, in three immunologically distinct murine models of IPA (chemotherapeutic, X-CGD, and corticosteroid). In all three IPA murine models, hypoxia was observed during the course of infection. We next tested the hypothesis that production of ethanol in vivo by the fungus is involved in hypoxia adaptation and fungal pathogenesis. Ethanol deficient A. fumigatus strains showed no growth defects in hypoxia and were able to cause wild type levels of mortality in all 3 murine models. However, lung immunohistopathology and flow cytometry analyses revealed an increase in the inflammatory response in mice infected with an alcohol dehydrogenase null mutant strain that corresponded with a reduction in fungal burden. Consequently, in this study we present the first in vivo observations that hypoxic microenvironments occur during a pulmonary invasive fungal infection and observe that a fungal alcohol dehydrogenase influences fungal pathogenesis in the lung. Thus, environmental conditions encountered by invading pathogenic fungi may result in substantial fungal metabolism changes that influence subsequent host immune responses.


PLOS Genetics | 2011

SREBP Coordinates Iron and Ergosterol Homeostasis to Mediate Triazole Drug and Hypoxia Responses in the Human Fungal Pathogen Aspergillus fumigatus

Michael Blatzer; Bridget M. Barker; Sven D. Willger; Nicola Beckmann; Sara J. Blosser; Elizabeth J. Cornish; Aurélien Mazurie; Nora Grahl; Hubertus Haas; Robert A. Cramer

Sterol regulatory element binding proteins (SREBPs) are a class of basic helix-loop-helix transcription factors that regulate diverse cellular responses in eukaryotes. Adding to the recognized importance of SREBPs in human health, SREBPs in the human fungal pathogens Cryptococcus neoformans and Aspergillus fumigatus are required for fungal virulence and susceptibility to triazole antifungal drugs. To date, the exact mechanism(s) behind the role of SREBP in these observed phenotypes is not clear. Here, we report that A. fumigatus SREBP, SrbA, mediates regulation of iron acquisition in response to hypoxia and low iron conditions. To further define SrbAs role in iron acquisition in relation to previously studied fungal regulators of iron metabolism, SreA and HapX, a series of mutants were generated in the ΔsrbA background. These data suggest that SrbA is activated independently of SreA and HapX in response to iron limitation, but that HapX mRNA induction is partially dependent on SrbA. Intriguingly, exogenous addition of high iron or genetic deletion of sreA in the ΔsrbA background was able to partially rescue the hypoxia growth, triazole drug susceptibility, and decrease in ergosterol content phenotypes of ΔsrbA. Thus, we conclude that the fungal SREBP, SrbA, is critical for coordinating genes involved in iron acquisition and ergosterol biosynthesis under hypoxia and low iron conditions found at sites of human fungal infections. These results support a role for SREBP–mediated iron regulation in fungal virulence, and they lay a foundation for further exploration of SREBPs role in iron homeostasis in other eukaryotes.


Antimicrobial Agents and Chemotherapy | 2007

Calcineurin Inhibition or Mutation Enhances Cell Wall Inhibitors against Aspergillus fumigatus

William J. Steinbach; Robert A. Cramer; B. Zachary Perfect; Christina Henn; Kirsten Nielsen; Joseph Heitman; John R. Perfect

ABSTRACT Calcineurin mutation or inhibition enhanced the antifungal morphological effect of cell wall inhibitors caspofungin or nikkomycin Z against Aspergillus fumigatus. Quantification of 1,3-β-d-glucan revealed decreased amounts in the calcineurin A (ΔcnaA) mutant. Calcineurin can be an excellent adjunct therapeutic target in combination with other cell wall inhibitors against A. fumigatus.


Eukaryotic Cell | 2012

Hypoxia and Fungal Pathogenesis: To Air or Not to Air?

Nora Grahl; Kelly M. Shepardson; Dawoon Chung; Robert A. Cramer

ABSTRACT Over the last 3 decades, the frequency of life-threatening human fungal infections has increased as advances in medical therapies, solid-organ and hematopoietic stem cell transplantations, an increasing geriatric population, and HIV infections have resulted in significant rises in susceptible patient populations. Although significant advances have been made in understanding how fungi cause disease, the dynamic microenvironments encountered by fungi during infection and the mechanisms by which they adapt to these microenvironments are not fully understood. As inhibiting and preventing in vivo fungal growth are main goals of antifungal therapies, understanding in vivo fungal metabolism in these host microenvironments is critical for the improvement of existing therapies or the design of new approaches. In this minireview, we focus on the emerging appreciation that pathogenic fungi like Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are exposed to oxygen-limited or hypoxic microenvironments during fungal pathogenesis. The implications of these in vivo hypoxic microenvironments for fungal metabolism and pathogenesis are discussed with an aim toward understanding the potential impact of hypoxia on invasive fungal infection outcomes.

Collaboration


Dive into the Robert A. Cramer's collaboration.

Top Co-Authors

Avatar

Nora Grahl

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge