Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert A. Kirken is active.

Publication


Featured researches published by Robert A. Kirken.


Molecular and Cellular Endocrinology | 1996

Prolactin recruits STAT1, STAT3 and STAT5 independent of conserved receptor tyrosines TYR402, TYR479, TYR515 and TYR580.

Luis DaSilva; Hallgeir Rui; Rebecca A. Erwin; O. M. Zack Howard; Robert A. Kirken; M G Malabarba; Rebecca Hackett; Andrew C. Larner; William L. Farrar

The present study of prolactin (PRL) receptor-mediated recruitment of signal transducers and activators of transcription (STATs) demonstrates that PRL activates STAT3, in addition to STAT1 and STAT5 as previously reported, and that STAT1, STAT3 and STAT5 are mediators of PRL effects in cells whether of lymphoid, myeloid or mammary epithelial origin. Furthermore, receptor mutants M240 and T280 that do not mediate PRL-induced JAK2 activation and cell proliferation, are also unable to mediate STAT activation, supporting the proposed model of JAK2 as the initial effector protein used by PRL receptors. On the other hand, tyrosine phosphorylation analysis and electrophoretic mobility shift assays showed that receptor mutant G328, which lacks four of the five conserved cytoplasmic tyrosine residues of PRL receptors, retained the ability to activate JAK2 and STAT1, STAT3 and STAT5. These results support the notion that phosphotyrosyl residues other than those of the receptor, i.e., JAK2, are involved in recruiting STAT proteins to the activated PRL receptor complex.


Journal of Biological Chemistry | 1998

Differential Control of the Phosphorylation State of Proline-juxtaposed Serine Residues Ser725 of Stat5a and Ser730 of Stat5b in Prolactin-sensitive Cells

Hiroko Yamashita; Jun Xu; Rebecca A. Erwin; William L. Farrar; Robert A. Kirken; Hallgeir Rui

Transcription factors of the Stat family are controlled by protein kinases. Phosphorylation of a positionally conserved tyrosine residue is obligatory for Stat dimerization, nuclear translocation, and specific DNA binding. Studies of Stat1 and Stat3 have suggested that serine phosphorylation may also regulate function. We now identify serine residues located in a conserved PSP motif of Stat5a (Ser725) and Stat5b (Ser730) as major phosphorylation sites, using mutagenesis, phosphoamino acid analysis, and site-specific anti-Stat5-phosphoserine antibodies. Unexpectedly, phosphorylation control of this PSP motif differed between the highly homologous Stat5a and Stat5b proteins. Whereas Ser725 of Stat5a was constitutively phosphorylated both in COS-7 cells and Nb2 lymphocytes, phosphorylation of Ser730of Stat5b was markedly stimulated by prolactin. The data also suggested the existence of a second major serine phosphorylation site in Stat5a. Interestingly, constitutive phosphorylation of the PSP motif was suppressed by PD98059 but not by staurosporine under conditions in which both agents inhibited mitogen-activated protein kinases. Furthermore, pretreatment of cells with staurosporine, PD98059, H7, or wortmannin did not prevent either Stat5a or Stat5b from becoming maximally serine-phosphorylated after prolactin exposure. We propose that two pathways regulate Stat5 serine phosphorylation, one that is prolactin-activated and PD98059-resistant and one that is constitutively active and PD98059-sensitive and preferentially targets Stat5a. Finally, phosphorylation of the PSP motif of Stat5a or Stat5b was not essential for DNA binding or transcriptional activation of a β-casein reporter gene in COS-7 cells, suggesting that serine kinase control of Stat5 activity differs from that of Stat1 and Stat3.


Journal of Leukocyte Biology | 1999

Tyrphostin AG-490 inhibits cytokine-mediated JAK3/STAT5a/b signal transduction and cellular proliferation of antigen-activated human T cells.

Robert A. Kirken; Rebecca A. Erwin; Dennis D. Taub; William J. Murphy; Fariba Behbod; Lihua Wang; Federica Pericle; William L. Farrar

Janus kinase 3 (JAK3) is a cytoplasmic tyrosine kinase required for T cell development and activated by cytokines that utilize the interleukin‐2 (IL‐2) receptor common gamma chain (γc). Genetic inactivation of JAK3 is manifested as severe combined immunodeficiency disease (SCID) in humans and mice. These findings have suggested that JAK3 represents a pharmacological target to control certain lymphoid‐derived diseases. Here we provide novel evidence that AG‐490 potently inhibits the autokinase activity of JAK3 and tyrosine phosphorylation and DNA binding of signal transducer and activator of transcription 5a and 5b (STAT5a/b). Similar inhibitory effects were observed with other cytokines that use γc. AG‐490 also inhibited IL‐2‐mediated proliferative growth in human T cells with an IC50 = 25 μM that was partially recoverable. Moreover, we demonstrate that this inhibitor prevented tetanus toxoid antigen‐specific T cell proliferation and expansion but failed to block activation of Zap70 or p56Lck after anti‐CD3 stimulation of human T cells. Taken together, these findings suggest that AG‐490 inhibits the JAK3‐mediated Type II signaling pathway but not the T cell receptor‐derived Type I pathway and possesses therapeutic potential for T cell‐derived pathologies such as graft‐versus‐host disease, allergy, and autoimmune disorders. J. Leukoc. Biol. 65: 891–899; 1999.


Journal of Biological Chemistry | 1997

Prolactin stimulates serine/tyrosine phosphorylation and formation of heterocomplexes of multiple Stat5 isoforms in Nb2 lymphocytes.

Robert A. Kirken; M. Grazia Malabarba; Jun Xu; Xiuwen Liu; William L. Farrar; Lothar Hennighausen; Andrew C. Larner; Philip M. Grimley; Hallgeir Rui

Transcription factors of the Stat gene family are selectively activated by many hormones and cytokines. Stat5 originally was cloned as a prolactin-stimulated DNA-binding protein, but is also activated by non-lactogenic cytokines in many cell types. The recent identification of two distinct Stat5 genes, which encode a 94-kDa Stat5a and a 92-kDa Stat5b as well as several lower molecular weight isoforms, suggests additional complexity and combinatorial possibilities for transcriptional regulation. We now report a biochemical analysis of prolactin activation of Stat proteins in Nb2 lymphocytes, which was associated with: 1) rapid tyrosine phosphorylation of Stat5a, Stat5b, a COOH-terminally truncated 80-kDa Stat5 form, Stat1α, and Stat3; 2) rapid and selective formation of Stat5a/b heterodimers, without involvement of Stat1α or Stat3; 3) marked serine, but not threonine phosphorylation of Stat5a and Stat5b; and 4) the appearance of two qualitatively distinct Stat5 protein complexes, which discriminated between oligonucleotides corresponding to the prolactin response elements of the β-casein and interferon regulatory factor-1 gene promoters. Collectively, our analyses showed that Stat5a and Stat5b respond similarly to prolactin receptor activation, but also suggested that the two genes have evolved unique properties that may contribute to the specificity of receptors that utilize Stat5 signaling proteins.


Cancer Research | 2008

Transcription Factor Stat5 Synergizes with Androgen Receptor in Prostate Cancer Cells

Shyh-Han Tan; Ayush Dagvadorj; Feng Shen; Lei Gu; Zhiyong Liao; Junaid Abdulghani; Ying Zhang; Edward P. Gelmann; Tobias Zellweger; Zoran Culig; Tapio Visakorpi; Lukas Bubendorf; Robert A. Kirken; James G. Karras; Marja T. Nevalainen

The molecular mechanisms underlying progression of prostate cancer to the hormone-independent state are poorly understood. Signal transducer and activator of transcription 5a and 5b (Stat5a/b) is critical for the viability of human prostate cancer cells. We have previously shown that Stat5a/b is constitutively active in high-grade human prostate cancer, but not in normal prostate epithelium. Furthermore, activation of Stat5a/b in primary human prostate cancer predicted early disease recurrence. We show here that transcription factor Stat5a/b is active in 95% of clinical hormone-refractory human prostate cancers. We show for the first time that Stat5a/b synergizes with androgen receptor (AR) in prostate cancer cells. Specifically, active Stat5a/b increases transcriptional activity of AR, and AR, in turn, increases transcriptional activity of Stat5a/b. Liganded AR and active Stat5a/b physically interact in prostate cancer cells and, importantly, enhance nuclear localization of each other. The work presented here provides the first evidence of synergy between AR and the prolactin signaling protein Stat5a/b in human prostate cancer cells.


Clinical Cancer Research | 2008

Transcription Factor Signal Transducer and Activator of Transcription 5 Promotes Growth of Human Prostate Cancer Cells In vivo

Ayush Dagvadorj; Robert A. Kirken; Benjamin E. Leiby; James G. Karras; Marja T. Nevalainen

Purpose: Signal transducer and activator of transcription 5a/b (Stat5a/b) is the key mediator of prolactin effects in prostate cancer cells via activation of Janus-activated kinase 2. Prolactin is a locally produced growth factor in human prostate cancer. Prolactin protein expression and constitutive activation of Stat5a/b are associated with high histologic grade of clinical prostate cancer. Moreover, activation of Stat5a/b in primary prostate cancer predicts early disease recurrence. Here, we inhibited Stat5a/b by several different methodologic approaches. Our goal was to establish a proof of principle that Stat5a/b is critical for prostate cancer cell viability in vitro and for prostate tumor growth in vivo. Experimental Design: We inhibited Stat5a/b protein expression by antisense oligonucleotides or RNA interference and transcriptional activity of Stat5a/b by adenoviral expression of a dominant-negative mutant of Stat5a/b in prostate cancer cells in culture. Moreover, Stat5a/b activity was suppressed in human prostate cancer xenograft tumors in nude mice. Stat5a/b regulation of Bcl-XL and cyclin D1 protein levels was shown by antisense suppression of Stat5a/b protein expression followed by Western blotting. Results and Conclusions: We show here that inhibition of Stat5a/b by antisense oligonucleotides, RNA interference, or adenoviral expression of dominant-negative Stat5a/b effectively kills prostate cancer cells. Moreover, we show that Stat5a/b is critical for human prostate cancer xenograft growth in nude mice. The effects of Stat5a/b on the viability of prostate cancer cells involve Stat5a/b regulation of Bcl-XL and cyclin D1 protein levels but not the expression or activation of Stat3. This work establishes Stat5a/b as a therapeutic target protein for prostate cancer. Pharmacologic inhibition of Stat5a/b in prostate cancer can be achieved by small-molecule inhibitors of transactivation, dimerization, or DNA binding of Stat5a/b.


Molecular and Cellular Endocrinology | 2001

Role of serine phosphorylation of Stat5a in prolactin-stimulated β-casein gene expression

Hiroko Yamashita; Marja T. Nevalainen; Jun Xu; Matthew J. LeBaron; Kay Uwe Wagner; Rebecca A. Erwin; Jeffrey M. Harmon; Lothar Hennighausen; Robert A. Kirken; Hallgeir Rui

Milk production remains suppressed in mammals during late pregnancy despite high levels of lactogenic polypeptide hormones. At parturition, associated with a precipitous fall in circulating progesterone, rising glucocorticoid levels synergize with prolactin to initiate copious milk production. This synergy is mediated at least in part through the coordinated activation of glucocorticoid receptors and transcription factor Stat5, particularly Stat5a. Here we show that two proline-juxtaposed serine residues within the transactivation domain of Stat5a are phosphorylated in the mammary gland during late gestation and lactation, and that these phosphorylation sites inhibit the transcriptional activity of Stat5a in the absence of glucocorticoid receptor costimulation. Specifically, transfection assays revealed that phosphorylation of residues S725 and S779 of Stat5a cooperatively suppressed prolactin-stimulated transcription from the beta-casein promoter in both COS-7 kidney and MCF-7 mammary cells. This suppression was associated with shortened duration and reduced amplitude of nuclear DNA binding activity of wild type Stat5a relative to that of the serine phosphorylation-defective Stat5 mutant. However, costimulation of glucocorticoid receptors completely reversed the suppressive effect of Stat5a serine phosphorylation on beta-casein gene transcription. We propose that serine phosphorylation within the transactivation domain may limit the activity of Stat5a in the absence of proper coactivation by glucocorticoid receptors.


Journal of Biological Chemistry | 1997

Two Discrete Regions of Interleukin-2 (IL2) Receptor β Independently Mediate IL2 Activation of a PD98059/Rapamycin/Wortmannin-insensitive Stat5a/b Serine Kinase

Robert A. Kirken; M. Grazia Malabarba; Jun Xu; Luis DaSilva; Rebecca A. Erwin; Xiuwen Liu; Lothar Hennighausen; Hallgeir Rui; William L. Farrar

Many cytokines, hormones, and growth factors activate Janus kinases to tyrosine phosphorylate select members of the Stat transcription factors. For full transcriptional activation, Stat1 and Stat3 also require phosphorylation of a conserved serine residue within a mitogen-activated protein kinase phosphorylation consensus site. On the other hand, two recently identified and highly homologous Stat5a and Stat5b proteins lack this putative mitogen-activated protein kinase phosphorylation site. The present study set out to establish whether Stat5a and Stat5b are under the control of an interleukin-2 (IL2)-activated Stat5 serine kinase. We now report that IL2 stimulated marked phosphorylation of serine and tyrosine residues of both Stat5a and Stat5b in human T lymphocytes and in several IL2-responsive lymphocytic cell lines. No Stat5a/b phosphothreonine was detected. Phosphoamino acid analysis also revealed that Stat5a/b phosphotyrosine levels were maximized within 1–5 min of IL2 stimulation, whereas serine phosphorylation kinetics were slower. Interestingly, IL2-induced serine phosphorylation of Stat5a differed quantitatively and temporally from that of Stat5b with Stat5a serine phosphorylation leveling off after 10 min and the more pronounced Stat5b response continuing to rise for at least 60 min of IL2 stimulation. Furthermore, we identified two discrete domains of IL2 receptor β (IL2Rβ) that could independently restore the ability of a truncated IL2Rβ mutant to mediate Stat5a/b phosphorylation and DNA binding to the γ-activated site of the β-casein gene promoter. These observations demonstrated that there is no strict requirement for one particular IL2Rβ region for Stat5 phosphorylation. Finally, we established that the IL2-activated Stat5a/b serine kinase is insensitive to several selective inhibitors of known IL2-stimulated kinases including MEK1/MEK2 (PD98059), mTOR (rapamycin), and phosphatidylinositol 3-kinase (wortmannin) as determined by phosphoamino acid and DNA binding analysis, thus suggesting that a yet-to-be-identified serine kinase mediates Stat5a/b activation.


Journal of Biological Chemistry | 2008

The PHB1/2 Phosphocomplex Is Required for Mitochondrial Homeostasis and Survival of Human T Cells

Jeremy A. Ross; Zsuzsanna S. Nagy; Robert A. Kirken

Many immune pathologies are the result of aberrant regulation of T lymphocytes. A functional proteomics approach utilizing two-dimensional gel electrophoresis coupled with mass spectrometry was employed to identify differentially expressed proteins in response to T cell activation. Two members of the prohibitin family of proteins, Phb1 and Phb2, were determined to be up-regulated 4–5-fold upon activation of primary human T cells. Furthermore, their expression was dependent upon CD3 and CD28 signaling pathways that synergistically led to the up-regulation (13–15-fold) of Phb1 and Phb2 mRNA levels as early as 48 h after activation. Additionally, orthophosphate labeling coupled with phosphoamino acid analysis identified Phb1 to be serine and Phb2 serine and tyrosine phosphorylated. Tyrosine phosphorylation of Phb2 was mapped to Tyr248 using mass spectrometry and confirmed by mutagenesis and phosphospecific antibodies. In contrast to previous reports of Phb1 and Phb2 being nuclear localized, subcellular fractionation, immunofluorescent, and electron microscopy revealed both proteins to localize to the mitochondrial inner membrane of human T cells. Accordingly, small interfering RNA-mediated knockdown of Phbs in Kit225 cells resulted in disruption of mitochondrial membrane potential. Additionally, Phb1 and Phb2 protein levels were up-regulated 2.5-fold during cytokine deprivation-mediated apoptosis of Kit225 cells, suggesting this complex plays a protective role in human T cells. Taken together, Phb1 and Phb2 are novel phosphoproteins up-regulated during T cell activation that function to maintain mitochondrial integrity and thus represent previously unrecognized therapeutic targets for regulating T cell activation, differentiation, viability, and function.


Journal of Immunology | 2001

Concomitant Inhibition of Janus Kinase 3 and Calcineurin-Dependent Signaling Pathways Synergistically Prolongs the Survival of Rat Heart Allografts

Fariba Behbod; Rebecca Erwin-Cohen; Mou-Er Wang; Barton W. Trawick; Xienui Qu; Regina Verani; Barry D. Kahan; Stanislaw M. Stepkowski; Robert A. Kirken

The cytoplasmic localized Janus tyrosine kinase 3 (Jak3) is activated by multiple cytokines, including IL-2, IL-4, and IL-7, through engagement of the IL-2R common γ-chain. Genetic inactivation of Jak3 is manifested as SCID in humans and mice. These findings have suggested that Jak3 represents a pharmacological target to control certain lymphoid-derived diseases. Using the rat T cell line Nb2-11c, we document that tyrphostin AG-490 blocked in vitro IL-2-induced cell proliferation (IC50 ∼20 μM), Jak3 autophosphorylation, and activation of its key substrates, Stat5a and Stat5b, as measured by tyrosine/serine phosphorylation analysis and DNA-binding experiments. To test the notion that inhibition of Jak3 provides immunosuppressive potential, a 7-day course of i.v. therapy with 5–20 mg/kg AG-490 was used to inhibit rejection of heterotopically transplanted Lewis (RT1l) heart allografts in ACI (RT1a) recipients. In this study, we report that AG-490 significantly prolonged allograft survival, but also acted synergistically when used in combination with the signal 1 inhibitor cyclosporin A, but not the signal 3 inhibitor, rapamycin. Finally, AG-490 treatment reduced graft infiltration of mononuclear cells and Stat5a/b DNA binding of ex vivo IL-2-stimulated graft infiltrating of mononuclear cells, but failed to affect IL2Rα expression, as judged by RNase protection assays. Thus, inhibition of Jak3 prolongs allograft survival and also potentiates the immunosuppressive effects of cyclosporin A, but not rapamycin.

Collaboration


Dive into the Robert A. Kirken's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William L. Farrar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Barry D. Kahan

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Hallgeir Rui

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jeremy A. Ross

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mou-Er Wang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Georgialina Rodriguez

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

Rebecca A. Erwin

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Fariba Behbod

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge