Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert A. Kunkle is active.

Publication


Featured researches published by Robert A. Kunkle.


Journal of Veterinary Diagnostic Investigation | 2007

Identification and characterization of two bovine spongiform encephalopathy cases diagnosed in the United States

Jürgen A. Richt; Robert A. Kunkle; David P. Alt; Eric M. Nicholson; Amir N. Hamir; Stefanie Czub; John P. Kluge; Arthur J. Davis; S. Mark Hall

Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy of cattle, first detected in 1986 in the United Kingdom and subsequently in other countries. It is the most likely cause of variant Creutzfeldt-Jakob disease (vCJD) in humans, but the origin of BSE has not been elucidated so far. This report describes the identification and characterization of two cases of BSE diagnosed in the United States. Case 1 (December 2003) exhibited spongiform changes in the obex area of the brainstem and the presence of the abnormal form of the prion protein, PrPSc, in the same brain area, by immunohistochemistry (IHC) and Western blot analysis. Initial suspect diagnosis of BSE for case 2 (November 2004) was made by a rapid ELISA-based BSE test. Case 2 did not exhibit unambiguous spongiform changes in the obex area, but PrPSc was detected by IHC and enrichment Western blot analysis in the obex. Using Western blot analysis, PrPSc from case 1 showed molecular features similar to typical BSE isolates, whereas PrPSc from case 2 revealed an unusual molecular PrPSc pattern: molecular mass of the unglycosylated and monoglycosylated isoform was higher than that of typical BSE isolates and case 2 was strongly labeled with antibody P4, which is consistent with a higher molecular mass. Sequencing of the prion protein gene of both BSE-positive animals revealed that the sequences of both animals were within the range of the prion protein gene sequence diversity previously reported for cattle.


Journal of Veterinary Diagnostic Investigation | 2005

Experimental Transmission of Chronic Wasting Disease Agent from Mule Deer to Cattle by the Intracerebral Route

Amir N. Hamir; Robert A. Kunkle; Randall C. Cutlip; Janice M. Miller; Katherine I. O'Rourke; Elizabeth S. Williams; Michael W. Miller; Mick J. Stack; Melanie J. Chaplin; Jürgen A. Richt

This communication reports final observations on experimental transmission of chronic wasting disease (CWD) from mule deer to cattle by the intracerebral route. Thirteen calves were inoculated intracerebrally with brain suspension from mule deer naturally affected with CWD. Three other calves were kept as uninoculated controls. The experiment was terminated 6 years after inoculation. During that time, abnormal prion protein (PrPres) was demonstrated in the central nervous system (CNS) of 5 cattle by both immunohistochemistry and Western blot. However, microscopic lesions suggestive of spongiform encephalopathy (SE) in the brains of these PrPres-positive animals were subtle in 3 cases and absent in 2 cases. Analysis of the gene encoding bovine PRNP revealed homozygosity for alleles encoding 6 octapeptide repeats, serine (S) at codon 46, and S at codon 146 in all samples. Findings of this study show that although PrPres amplification occurred after direct inoculation into the brain, none of the affected animals had classic histopathologic lesions of SE. Furthermore, only 38% of the inoculated cattle demonstrated amplification of PrPres. Although intracerebral inoculation is an unnatural route of exposure, this experiment shows that CWD transmission in cattle could have long incubation periods (up to 5 years). This finding suggests that oral exposure of cattle to CWD agent, a more natural potential route of exposure, would require not only a much larger dose of inoculum but also may not result in amplification of PrPres within CNS tissues during the normal lifespan of cattle.


Journal of Veterinary Diagnostic Investigation | 2006

Transmission of chronic wasting disease of mule deer to Suffolk sheep following intracerebral inoculation

Amir N. Hamir; Robert A. Kunkle; Randall C. Cutlip; Janice M. Miller; Elizabeth S. Williams; Juergen A. Richt

To determine the transmissibility of chronic wasting disease (CWD) to sheep, 8 Suffolk lambs of various prion protein genotypes (4 ARQ/ARR, 3 ARQ/ARQ, 1 ARQ/VRQ at codons 136, 154, and 171, respectively) were inoculated intracerebrally with brain suspension from mule deer with CWD (CWDmd). Two other lambs were kept as noninoculated controls. Within 36 months postinoculation (MPI), 2 inoculated animals became sick and were euthanized. Only 1 sheep (euthanized at 35 MPI) showed clinical signs that were consistent with those described for scrapie. Microscopic lesions of spongiform encephalopathy (SE) were only seen in this sheep, and its tissues were determined to be positive for the abnormal prion protein (PrPres) by immunohistochemistry and Western blot. Three other inoculated sheep were euthanized (36 to 60 MPI) because of conditions unrelated to TSE. The 3 remaining inoculated sheep and the 2 control sheep did not have clinical signs of disease at the termination of the study (72 MPI) and were euthanized. Of the 3 remaining inoculated sheep, 1 was found to have SE, and its tissues were positive for PrPres. The sheep with clinical prion disease (euthanized at 35 MPI) was of the heterozygous genotype (ARQ/VRQ), and the sheep with subclinical disease (euthanized at 72 MPH) was of the homozygous ARQ/ARQ genotype. These findings demonstrate that transmission of the CWDmd agent to sheep via the intracerebral route is possible. Interestingly, the host genotype may play a notable part in successful transmission and incubation period of CWDmd.


PLOS Pathogens | 2013

Chronic Wasting Disease in Bank Voles: Characterisation of the Shortest Incubation Time Model for Prion Diseases

Michele Angelo Di Bari; Romolo Nonno; Joaquín Castilla; Claudia D'Agostino; Laura Pirisinu; Geraldina Riccardi; Michela Conte; Juergen A. Richt; Robert A. Kunkle; Jan Langeveld; Gabriele Vaccari; Umberto Agrimi

In order to assess the susceptibility of bank voles to chronic wasting disease (CWD), we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively) with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100%) was observed with mean survival times ranging from 156 to 281 days post inoculation. Subsequent passages in Bv109I allowed us to isolate from all CWD sources the same vole-adapted CWD strain (Bv109ICWD), typified by unprecedented short incubation times of 25–28 days and survival times of ∼35 days. Neuropathological and molecular characterisation of Bv109ICWD showed that the classical features of mammalian prion diseases were all recapitulated in less than one month after intracerebral inoculation. Bv109ICWD was characterised by a mild and discrete distribution of spongiosis and relatively low levels of protease-resistant PrPSc (PrPres) in the same brain regions. Despite the low PrPres levels and the short time lapse available for its accumulation, end-point titration revealed that brains from terminally-ill voles contained up to 108,4 i.c. ID50 infectious units per gram. Bv109ICWD was efficiently replicated by protein misfolding cyclic amplification (PMCA) and the infectivity faithfully generated in vitro, as demonstrated by the preservation of the peculiar Bv109ICWD strain features on re-isolation in Bv109I. Overall, we provide evidence that the same CWD strain was isolated in Bv109I from the three-cervid species. Bv109ICWD showed unique characteristics of “virulence”, low PrPres accumulation and high infectivity, thus providing exceptional opportunities to improve basic knowledge of the relationship between PrPSc, neurodegeneration and infectivity.


Journal of Veterinary Diagnostic Investigation | 2004

Transmission of sheep scrapie to elk (Cervus elaphus nelsoni) by intracerebral inoculation: final outcome of the experiment

Amir N. Hamir; Janice M. Miller; Randall C. Cutlip; Robert A. Kunkle; Allen L. Jenny; Mick J. Stack; Melanie J. Chaplin; Juergen A. Richt

This is a final report of an experimental transmission of sheep scrapie agent by intracerebral inoculation to Rocky Mountain elk (Cervus elaphus nelsoni). It documents results obtained in experimental (n = 6) and control (n = 2) elk. During the first 2 years postinoculation (PI), 3 animals died or were euthanized because of infection or injuries other than spongiform encephalopathy (SE). In years 3 and 4 PI, 3 other inoculated elk died after brief terminal neurological episodes. Necropsy of these animals revealed moderate weight loss but no other gross lesions. Microscopically, characteristic lesions of SE were seen throughout the brain and spinal cord, and the tissue was positive for proteinase K-resistant prion protein (PrPres) by immunohistochemistry (IHC) and by Western blot. Scrapie-associated fibrils (SAF) were observed by negative-stain electron microscopy in the brain of elk with neurologic signs. PrPres and SAF were not detected in the 3 inoculated elk necropsied during the first 2 years or in the 2 control animals. Retrospective analysis of the gene-encoding cervid PrP revealed a polymorphism at codon 132. The elk with SE were either homozygous (MM) or heterozygous (LM). These findings confirm that intracerebral inoculation of sheep scrapie agent results in SE with accumulations of PrPres in the central nervous system of elk. Based on morphologic and IHC findings, the experimentally induced SE cannot be distinguished from chronic wasting disease of elk with currently available diagnostic techniques.


Veterinary Pathology | 2007

Susceptibility of Cattle to First-passage Intracerebral Inoculation with Chronic Wasting Disease Agent from White-tailed Deer

Amir N. Hamir; Janice M. Miller; Robert A. Kunkle; S. M. Hall; Jürgen A. Richt

Fourteen, 3-month-old calves were intracerebrally inoculated with the agent of chronic wasting disease (CWD) from white-tailed deer (CWDwtd) to compare the clinical signs and neuropathologic findings with those of certain other transmissible spongiform encephalopathies (TSE, prion diseases) that have been shown to be experimentally transmissible to cattle (sheep scrapie, CWD of mule deer [CWDmd], bovine spongiform encephalopathy [BSE], and transmissible mink encephalopathy). Two uninoculated calves served as controls. Within 26 months postinoculation (MPI), 12 inoculated calves had lost considerable weight and eventually became recumbent. Of the 12 inoculated calves, 11 (92%) developed clinical signs. Although spongiform encephalopathy (SE) was not observed, abnormal prion protein (PrPd) was detected by immunohistochemistry (IHC) and Western blot (WB) in central nervous system tissues. The absence of SE with presence of PrPd has also been observed when other TSE agents (scrapie and CWDmd) were similarly inoculated into cattle. The IHC and WB findings suggest that the diagnostic techniques currently used to confirm BSE would detect CWDwtd in cattle, should it occur naturally. Also, the absence of SE and a distinctive IHC pattern of CWDwtd and CWDmd in cattle suggests that it should be possible to distinguish these conditions from other TSEs that have been experimentally transmitted to cattle.


Journal of Veterinary Diagnostic Investigation | 2005

Experimental transmission of sheep scrapie by intracerebral and oral routes to genetically susceptible Suffolk sheep in the United States

Amir N. Hamir; Robert A. Kunkle; Juergen A. Richt; Janice M. Miller; Randall C. Cutlip; Allen L. Jenny

Scrapie is a naturally occurring fatal neurodegenerative disease of sheep and goats. Susceptibility to the disease is partly dependent on the genetic makeup of the host. This study documents clinicopathological findings and the distribution of abnormal prion proteins (PrPres) by immunohistochemical and Western blot techniques, in tissues of genetically susceptible sheep inoculated with US sheep scrapie agents. Four-month-old Suffolk lambs (QQ or HQ at codon 171) were inoculated (5 intracerebrally and 19 orally) with an inoculum (#13–7) consisting of a pool of scrapie-affected sheep brains. Intracerebrally inoculated animals were euthanized when advanced clinical signs of scrapie were observed. Orally inoculated animals were euthanized at predetermined time points (4, 9, 12, 15, and 21 months postinoculation [PI]) and thereafter when the animals had terminal signs of disease. All intracerebrally inoculated animals exhibited clinical signs of scrapie and were euthanized between 13 and 24 months PI. Spongiform lesions in the brains and PrPres deposits in central nervous system and lymphoid tissues were present in these sheep. In orally inoculated sheep, clinical signs of scrapie were seen between 27 and 43 months PI in 5/9 animals. The earliest detectable PrPres was observed in brainstem and lymphoid tissues of a clinically normal, orally inoculated sheep at 15 months PI. Three of the 4 clinically normal sheep were positive at 15, 20, and 49 months PI by PrPres immunohistochemistry.


Veterinary Pathology | 2008

Experimental Transmission of US Scrapie Agent by Nasal, Peritoneal, and Conjunctival Routes to Genetically Susceptible Sheep

Amir N. Hamir; Robert A. Kunkle; Jürgen A. Richt; Janice M. Miller; Justin J. Greenlee

Scrapie is a naturally occurring fatal neurodegenerative disease of sheep and goats. This study documents incubation periods, pathologic findings, and distribution of abnormal prion proteins (PrPSc) by immunohistochemistry in tissues of genetically susceptible sheep inoculated with US sheep scrapie agent. Four-month-old Suffolk lambs (QQ at codon 171) were inoculated by 1 of 3 different routes (nasal, peritoneal, and conjunctival) with an inoculum (No. 13–7) consisting of a pool of scrapie-affected sheep brains. Except for 3 sheep, all inoculated animals were euthanized when advanced clinical signs of scrapie were observed between 19 and 46 months postinoculation (MPI). Spongiform lesions in the brains and labeling of PrPSc in central nervous system and lymphoid tissues were present in these sheep. One intranasally inoculated sheep euthanized at 12 MPI had presence of PrPSc that was confined to the pharyngeal tonsil. These results indicate that the upper respiratory tract, specifically the pharyngeal tonsil, may serve as a portal of entry for prion protein in scrapie-infected environments.


Veterinary Pathology | 2006

First and Second Cattle Passage of Transmissible Mink Encephalopathy by Intracerebral Inoculation

Amir N. Hamir; Robert A. Kunkle; Janice M. Miller; J. C. Bartz; Jürgen A. Richt

To compare clinicopathologic findings of transmissible mink encephalopathy (TME) with other transmissible spongiform encephalopathies (TSE, prion diseases) that have been shown to be experimentally transmissible to cattle (sheep scrapie and chronic wasting disease [CWD]), two groups of calves (n = 4 each) were intracerebrally inoculated with TME agents from two different sources (mink with TME and a steer with TME). Two uninoculated calves served as controls. Within 15.3 months postinoculation, all animals from both inoculated groups developed clinical signs of central nervous system (CNS) abnormality; their CNS tissues had microscopic spongiform encephalopathy (SE); and abnormal prion protein (PrPres) as detected in their CNS tissues by immunohistochemistry (IHC) and Western blot (WB) techniques. These findings demonstrate that intracerebrally inoculated cattle not only amplify TME PrPres but also develop clinical CNS signs and extensive lesions of SE. The latter has not been shown with other TSE agents (scrapie and CWD) similarly inoculated into cattle. The findings also suggest that the diagnostic techniques currently used for confirmation of bovine spongiform encephalopathy (BSE) would detect TME in cattle should it occur naturally. However, it would be a diagnostic challenge to differentiate TME in cattle from BSE by clinical signs, neuropathology, or the presence of PrPres by IHC and WB.


Veterinary Pathology | 2006

Abnormal Prion Protein in Ectopic Lymphoid Tissue in a Kidney of an Asymptomatic White-tailed Deer Experimentally Inoculated with the Agent of Chronic Wasting Disease

Amir N. Hamir; Robert A. Kunkle; Janice M. Miller; S. M. Hall

Chronic wasting disease (CWD), a transmissible spongiform encephalopathy (TSE) of deer and elk, is one of a group of fatal, neurologic diseases that affect several mammalian species, including human beings. infection by the causative agent induces accumulations of an abnormal form of prion protein (PrPres) in nervous and lymphoid tissues. This report documents the presence of PrPres within ectopic lymphoid follicles in a kidney of a white-tailed deer that had been experimentally inoculated by the intracerebral route with CWD 10 months previously. The deer was nonclinical, but spongiform lesions characteristic of TSE were detected in tissues of the central nervous system (CNS) and PrPres was seen in CNS and in lymphoid tissues by immunohistochemistry. The demonstration of PrPres in lymphoid tissue in the kidney of this deer corroborates a recently published finding of PrPres in lymphoid follicles of organs other than CNS and lymphoid tissues in laboratory animals with TSE (scrapie).

Collaboration


Dive into the Robert A. Kunkle's collaboration.

Top Co-Authors

Avatar

Amir N. Hamir

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Janice M. Miller

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Justin J. Greenlee

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric M. Nicholson

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Juergen A. Richt

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Randall C. Cutlip

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Jodi D. Smith

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allen L. Jenny

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge