Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert A. Laird is active.

Publication


Featured researches published by Robert A. Laird.


The American Naturalist | 2006

Competitive Intransitivity Promotes Species Coexistence

Robert A. Laird; Brandon S. Schamp

Using a spatially explicit cellular automaton model with local competition, we investigate the potential for varied levels of competitive intransitivity (i.e., nonhierarchical competition) to promote species coexistence. As predicted, on average, increased levels of intransitivity result in more sustained coexistence within simulated communities, although the outcome of competition also becomes increasingly unpredictable. Interestingly, even a moderate degree of intransitivity within a community can promote coexistence, in terms of both the length of time until the first competitive exclusion and the number of species remaining in the community after 500 simulated generations. These results suggest that modest levels of intransitivity in nature, such as those that are thought to be characteristic of plant communities, can contribute to coexistence and, therefore, community‐scale biodiversity. We explore a potential connection between competitive intransitivity and neutral theory, whereby competitive intransitivity may represent an important mechanism for “ecological equivalence.”


Oecologia | 2007

Arbuscular mycorrhizal fungi reduce the construction of extrafloral nectaries in Vicia faba.

Robert A. Laird; John F. Addicott

Arbuscular mycorrhizal fungi (AMF) can alter the physiology and morphology of their host plant, and therefore may have indirect effects on insect herbivores and pollinators. We conducted this study to test the hypothesis that AMF can also affect insects involved in protection-for-food mutualisms. We examined the constitutive and inducible production of food rewards [extrafloral (EF) nectaries] in Vicia faba plants by manipulating the presence/absence of AMF and by simulating various levels of herbivory. Plants inoculated with AMF produced significantly fewer EF nectaries than uninoculated plants, even after accounting for differences in plant growth. In contrast to earlier studies, EF nectaries were not inducible: damaged plants produced significantly fewer EF nectaries than undamaged plants. Moreover, the effects of mycorrhizal and damage status on EF nectary production were additive. The reduction in EF nectaries in mycorrhizal plants potentially represents a mechanism for indirect effects of AMF on the protective insects that exploit EF nectaries as a food source (e.g., ants). Reduced reward size should result in reduced protection by ants, and could therefore be a previously unappreciated cost of the mycorrhizal symbiosis to host plants. However, the overall effect of AMF will depend upon the extent to which the reduction of EF nectaries affects the number and activity of ants and the extent to which AMF alter other aspects of host plant physiology. Our results emphasize the complexity of multitrophic interactions, particularly those that span belowground and aboveground ecology.


Plant Ecology | 2005

Size inequality and the tragedy of the commons phenomenon in plant competition

Robert A. Laird; Lonnie W. Aarssen

Game theory predicts that the evolutionarily stable level of root production is greater for plants grown with neighbours compared to plants grown alone, even when the available resources per plant are constant. This follows from the fact that for plants grown alone, new roots compete only with other roots on the same plant, whereas for multiple plants grown in a group, new roots can also compete with the roots of other plants, thereby potentially acquiring otherwise unavailable resources at their neighbours’ expense. This phenomenon, which results in plants grown with neighbours over-proliferating roots at the expense of above-ground biomass, has been described as a ‘tragedy of the commons’, and requires that plants can distinguish self from non-self tissues. While this game theoretical model predicts the evolutionarily stable strategies of individual plants, it has only been tested on average allocation patterns of groups of plants. This is problematic, because average patterns can appear to reflect a tragedy of the commons, even when none has occurred. In particular, assuming (1) a decelerating relationship between individual plant biomass and the amount of resources available, and (2) greater size inequality in plants grown with neighbours compared to plants grown alone (due to asymmetric competition), then plants grown with neighbours should, at least on average, be smaller than plants grown alone. This is a manifestation of ‘Jensen’s Inequality’, which states that for decelerating functions, the average value of the function is less than the function of the average value. We suggest that Jensen’s Inequality should serve as an appropriate null hypothesis for examining biologically-based explanations of changes in biomass allocation strategies.


Journal of Animal Ecology | 2010

Empirical evidence of senescence in adult damselflies (Odonata: Zygoptera).

Thomas N. Sherratt; Robert A. Laird; Christopher Hassall; Chris D. Lowe; Ian F. Harvey; Phillip C. Watts; Adolfo Cordero-Rivera; David J. Thompson

1. Age-dependent increases in mortality have been documented in a variety of species of insect under laboratory conditions. However, while strong statistical evidence has been presented for senescence in vertebrate populations in the wild, we know little about the rate and shape of senescence in wild populations of insects. 2. Odonates (damselflies and dragonflies) provide excellent candidate species for evaluating demographic senescence as they are large enough to be marked individually and they are easily re-sighted without recapture. The prevailing opinion - based entirely on qualitative examination of the declines in log numbers alive with time since marking - is that odonates exhibit age-independent daily survivorship. 3. Here, we examine mark-recapture data on the Azure Damselfly Coenagrion puella over two consecutive seasons. For the first time, we evaluate and compare the fit of quantitative models that not only account for weather-dependent daily variation in daily re-sighting rates, but also age-dependent variation in daily survivorship. 4. Models with age-dependent declines in daily survivorship provide a more parsimonious explanation for the data than similar models without these age-dependent effects. In general, models in which mortality increases in an exponential (Gompertz) fashion explain the mark-recapture sequences more efficiently than a range of alternative models, including those in which mortality increases as a power function (Weibull) or reaches a plateau (logistic). These results are indicative of a general senescent decline in physiological functioning, which is particularly marked after 15 days as a mature adult. 5. Weather (temperature, sun and precipitation) and initial mite load influenced the probability of daily re-sighting. Weather and mite load also influenced daily survivorship, but their effects differed between seasons. 6. Overall, fitting models with age as an explicit covariate demonstrates that odonates do indeed senesce. This contradicts previously held assumptions that Odonata do not exhibit age-dependent survivorship in the wild.


Journal of Theoretical Biology | 2015

Competitive intransitivity, population interaction structure, and strategy coexistence

Robert A. Laird; Brandon S. Schamp

Intransitive competition occurs when competing strategies cannot be listed in a hierarchy, but rather form loops-as in the game rock-paper-scissors. Due to its cyclic competitive replacement, competitive intransitivity promotes strategy coexistence, both in rock-paper-scissors and in higher-richness communities. Previous work has shown that this intransitivity-mediated coexistence is strongly influenced by spatially explicit interactions, compared to when populations are well mixed. Here, we extend and broaden this line of research and examine the impact on coexistence of intransitive competition taking place on a continuum of small-world networks linking spatial lattices and regular random graphs. We use simulations to show that the positive effect of competitive intransitivity on strategy coexistence holds when competition occurs on networks toward the spatial end of the continuum. However, in networks that are sufficiently disordered, increasingly violent fluctuations in strategy frequencies can lead to extinctions and the prevalence of monocultures. We further show that the degree of disorder that leads to the transition between these two regimes is positively dependent on population size; indeed for very large populations, intransitivity-mediated strategy coexistence may even be possible in regular graphs with completely random connections. Our results emphasize the importance of interaction structure in determining strategy dynamics and diversity.


Journal of Evolutionary Biology | 2009

The evolution of senescence through decelerating selection for system reliability

Robert A. Laird; Thomas N. Sherratt

Senescence is a universal phenomenon in organisms, characterized by increasing mortality and decreasing fecundity with advancing chronological age. Most proximate agents of senescence, such as reactive oxygen species and UV radiation, are thought to operate by causing a gradual build‐up of bodily damage. Yet most current evolutionary theories of senescence emphasize the deleterious effects of functioning genes in late life, leaving a gap between proximate and ultimate explanations. Here, we present an evolutionary model of senescence based on reliability theory, in which beneficial genes or gene products gradually get damaged and thereby fail, rather than actively cause harm. Specifically, the model allows organisms to evolve multiple redundant copies of a gene product (or gene) that performs a vital function, assuming that organisms can avoid condition‐dependent death so long as at least one copy remains undamaged. We show that organisms with low levels of extrinsic mortality, and high levels of genetic damage, tend to evolve high levels of redundancy, and that mutation–selection balance results in a stable population distribution of the number of redundant elements. In contrast to previous evolutionary models of senescence, the mortality curves that emerge from such populations match empirical senescence patterns in three key respects: they exhibit: (1) an initially low, but rapidly increasing mortality rate at young ages, (2) a plateau in mortality at advanced ages and (3) ‘mortality compensation’, whereby the height of the mortality plateau is independent of the environmental conditions under which different populations evolved.


Journal of Evolutionary Biology | 2011

A comparative analysis of senescence in adult damselflies and dragonflies (Odonata)

Thomas N. Sherratt; Christopher Hassall; Robert A. Laird; David J. Thompson; Adolfo Cordero-Rivera

Any population whose members are subject to extrinsic mortality should exhibit an increase in mortality with age. Nevertheless, the prevailing opinion is that populations of adult damselflies and dragonflies do not exhibit such senescence. Here, we challenge this contention by fitting a range of demographic models to the data on which these earlier conclusions were based. We show that a model with an exponential increase in age‐related mortality (Gompertz) generally provides a more parsimonious fit than alternative models including age‐independent mortality, indicating that many odonates do indeed senesce. Controlling for phylogeny, a comparison of the daily mortality of 35 odonate species indicates that although male and female mortalities are positively correlated, mortality tends to be higher in males of those species that exhibit territoriality. Hence, we show for the first time that territoriality may impose a survivorship cost on males, once the underlying phylogenetic relationships are accounted for.


Journal of Insect Science | 2016

A Review of the McMorran Diet for Rearing Lepidoptera Species With Addition of a Further 39 Species

Vincent A. D. Hervet; Robert A. Laird; Kevin D. Floate

Research on cutworms led us to explore the use of the McMorran diet to rear lepidopteran species, mainly Noctuidae, under laboratory conditions. We documented the development of 103 lepidopteran species, including 39 species not previously reported in the literature, to be reared on this diet. Given its low cost, ease of preparation, and wide species’ acceptance, this diet provides a powerful tool for facilitating Lepidoptera and other insects rearing and research in the laboratory. Résumé Une recherche sur les noctuelles nous a permis d’élever des larves de nombreuses espèces de lépidoptères, principalement des noctuelles, sur un substrat artificiel du nom de «McMorran diet» en laboratoire. Nous reportons le développement de 103 espèces de lépidoptères, dont 39 espèces qui n’ont pas encore été documentées, comme pouvant se développer sur ce substrat artificiel. Étant donné son faible coût, facilité de préparation, et large champ d’action, ce substrat artificiel peut grandement faciliter la recherche sur les lépidoptères et autres insectes en laboratoire.


Journal of Evolutionary Biology | 2016

A multigenerational effect of parental age on offspring size but not fitness in common duckweed (Lemna minor)

Patrick M. Barks; Robert A. Laird

Classic theories on the evolution of senescence make the simplifying assumption that all offspring are of equal quality, so that demographic senescence only manifests through declining rates of survival or fecundity. However, there is now evidence that, in addition to declining rates of survival and fecundity, many organisms are subject to age‐related declines in the quality of offspring produced (i.e. parental age effects). Recent modelling approaches allow for the incorporation of parental age effects into classic demographic analyses, assuming that such effects are limited to a single generation. Does this ‘single‐generation’ assumption hold? To find out, we conducted a laboratory study with the aquatic plant Lemna minor, a species for which parental age effects have been demonstrated previously. We compared the size and fitness of 423 laboratory‐cultured plants (asexually derived ramets) representing various birth orders, and ancestral ‘birth‐order genealogies’. We found that offspring size and fitness both declined with increasing ‘immediate’ birth order (i.e. birth order with respect to the immediate parent), but only offspring size was affected by ancestral birth order. Thus, the assumption that parental age effects on offspring fitness are limited to a single generation does in fact hold for L. minor. This result will guide theorists aiming to refine and generalize modelling approaches that incorporate parental age effects into evolutionary theory on senescence.


Journal of Evolutionary Biology | 2015

Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate‐induced range shifts

A.L. Hargreaves; Susan F. Bailey; Robert A. Laird

Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low‐latitude/low‐elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate‐induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient. We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual‐based model. We compare range‐wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs), and for a single climate genotype vs. multiple genotypes locally adapted to temperature. During climate stability, dispersal decreased towards RLs when fitness was uniform, but increased when fitness declined towards RLs, due to highly dispersive genotypes maintaining sink populations at RLs, increased kin selection in smaller populations, and an emergent fitness asymmetry that favoured dispersal in low‐quality habitat. However, this initial dispersal advantage at low‐fitness RLs did not facilitate climate tracking, as it was outweighed by an increased probability of extinction. Locally adapted genotypes benefited from staying close to their climate optima; this selected against dispersal under stable climates but for increased dispersal throughout shifting ranges, compared to cases without local adaptation. Dispersal increased at expanding RLs in most scenarios, but only increased at the range centre and contracting RLs given local adaptation to climate.

Collaboration


Dive into the Robert A. Laird's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin D. Floate

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.M. Wilches

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Jason Pither

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge