Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert A. Lazenby is active.

Publication


Featured researches published by Robert A. Lazenby.


Journal of the American Chemical Society | 2015

Time-Resolved Detection and Analysis of Single Nanoparticle Electrocatalytic Impacts

Minkyung Kang; David Perry; Yang-Rae Kim; Alex W. Colburn; Robert A. Lazenby; Patrick R. Unwin

There is considerable interest in understanding the interaction and activity of single entities, such as (electro)catalytic nanoparticles (NPs), with (electrode) surfaces. Through the use of a high bandwidth, high signal/noise measurement system, NP impacts on an electrode surface are detected and analyzed in unprecedented detail, revealing considerable new mechanistic information on the process. Taking the electrocatalytic oxidation of H2O2 at ruthenium oxide (RuOx) NPs as an example, the rise time of current-time transients for NP impacts is consistent with a hydrodynamic trapping model for the arrival of a NP with a distance-dependent NP diffusion-coefficient. NP release from the electrode appears to be aided by propulsion from the electrocatalytic reaction at the NP. High-frequency NP impacts, orders of magnitude larger than can be accounted for by a single pass diffusive flux of NPs, are observed that indicate the repetitive trapping and release of an individual NP that has not been previously recognized. The experiments and models described could readily be applied to other systems and serve as a powerful platform for detailed analysis of NP impacts.


Analytical Chemistry | 2016

Characterization of Nanopipettes

David Perry; Dmitry Momotenko; Robert A. Lazenby; Minkyung Kang; Patrick R. Unwin

Nanopipettes are widely used in electrochemical and analytical techniques as tools for sizing, sequencing, sensing, delivery, and imaging. For all of these applications, the response of a nanopipette is strongly affected by its geometry and surface chemistry. As the size of nanopipettes becomes smaller, precise geometric characterization is increasingly important, especially if nanopipette probes are to be used for quantitative studies and analysis. This contribution highlights the combination of data from voltage-scanning ion conductivity experiments, transmission electron microscopy and finite element method simulations to fully characterize nanopipette geometry and surface charge characteristics, with an accuracy not achievable using existing approaches. Indeed, it is shown that presently used methods for characterization can lead to highly erroneous information on nanopipettes. The new approach to characterization further facilitates high-level quantification of the behavior of nanopipettes in electrochemical systems, as demonstrated herein for a scanning ion conductance microscope setup.


Analytical Chemistry | 2013

Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) : visualizing interfacial reactions and fluxes from surfaces to bulk solution

Robert A. Lazenby; Kim McKelvey; Patrick R. Unwin

Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) is introduced as a powerful new technique for the quantitative visualization of redox activity and concentration at and above a surface of interest. HIC-SECM combines a hopping imaging mode, in which data are acquired at a tip as a function of distance (z) from the surface, at a series of x, y pixels across the surface, using the principles of intermittent contact to provide a nonelectrochemical means of determining when the tip and the substrate come into contact. The implementation of HIC-SECM is described, and SECM feedback measurements in three-dimensional (3D) space over a gold band array are presented. To demonstrate the generality of the methodology, flux imaging is also carried out over a Pt-disk ultramicroelectrode (UME) in the feedback mode and substrate generation/tip collection mode. The type of information that can be extracted from the data sets acquired include x-y current maps at a well-defined tip-substrate separation (parallel to the surface), x-z current maps (normal to the surface), 3D x-y-z profiles, approach curves at particular spots on the surface of interest, and surface topography. Moreover, because HIC-SECM utilizes an oscillating probe, alternating current data are also obtained that greatly enhances the information content compared to other types of electrochemical imaging. Furthermore, interfacial fluxes are ubiquitous in chemistry and allied areas, and HIC-SECM opens up the possibility of detailed flux visualization in three dimensions for many physicochemical processes.


ACS Applied Materials & Interfaces | 2016

Versatile polymer-free graphene transfer method and applications

Guohui Zhang; Aleix G. Güell; Paul M. Kirkman; Robert A. Lazenby; Thomas S. Miller; Patrick R. Unwin

A new method for transferring chemical vapor deposition (CVD)-grown monolayer graphene to a variety of substrates is described. The method makes use of an organic/aqueous biphasic configuration, avoiding the use of any polymeric materials that can cause severe contamination problems. The graphene-coated copper foil sample (on which graphene was grown) sits at the interface between hexane and an aqueous etching solution of ammonium persulfate to remove the copper. With the aid of an Si/SiO2 substrate, the graphene layer is then transferred to a second hexane/water interface to remove etching products. From this new location, CVD graphene is readily transferred to arbitrary substrates, including three-dimensional architectures as represented by atomic force microscopy (AFM) tips and transmission electron microscopy (TEM) grids. Graphene produces a conformal layer on AFM tips, to the very end, allowing easy production of tips for conductive AFM imaging. Graphene transferred to copper TEM grids provides large-area, highly electron-transparent substrates for TEM imaging. These substrates can also be used as working electrodes for electrochemistry and high-resolution wetting studies. By using scanning electrochemical cell microscopy, it is possible to make electrochemical and wetting measurements at either a freestanding graphene film or a copper-supported graphene area and readily determine any differences in behavior.


Journal of Solid State Electrochemistry | 2013

Nanoscale intermittent contact-scanning electrochemical microscopy

Robert A. Lazenby; Kim McKelvey; Massimo Peruffo; Marc Baghdadi; Patrick R. Unwin

A major theme in scanning electrochemical microscopy (SECM) is a methodology for nanoscale imaging with distance control and positional feedback of the tip. We report the expansion of intermittent contact (IC)-SECM to the nanoscale, using disk-type Pt nanoelectrodes prepared using the laser-puller sealing method. The Pt was exposed using a focused ion beam milling procedure to cut the end of the electrode to a well-defined glass sheath radius, which could also be used to reshape the tips to reduce the size of the glass sheath. This produced nanoelectrodes that were slightly recessed, which was optimal for IC-SECM on the nanoscale, as it served to protect the active part of the tip. A combination of finite element method simulations, steady-state voltammetry and scanning electron microscopy for the measurement of critical dimensions, was used to estimate Pt recession depth. With this knowledge, the tip-substrate alignment could be further estimated by tip approach curve measurements. IC-SECM has been implemented by using a piezo-bender actuator for the detection of damping of the oscillation amplitude of the tip, when IC occurs, which was used as a tip-position feedback mechanism. The piezo-bender actuator improves significantly on the performance of our previous setup for IC-SECM, as the force acting on the sample due to the tip is greatly reduced, allowing studies with more delicate tips. The capability of IC-SECM is illustrated with studies of a model electrode (metal/glass) substrate.


CrystEngComm | 2015

Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) as a new local dissolution kinetic probe: application to salicylic acid dissolution in aqueous solution

Amelia R. Perry; Robert A. Lazenby; Maria Adobes-Vidal; Massimo Peruffo; Kim McKelvey; Michael E. Snowden; Patrick R. Unwin

Dissolution kinetics of the (110) face of salicylic acid in aqueous solution is determined by hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM) using a 2.5 μm diameter platinum ultramicroelectrode (UME). The method operates by translating the probe UME towards the surface at a series of positions across the crystal and inducing dissolution via the reduction of protons to hydrogen, which titrates the weak acid and promotes the dissolution reaction, but only when the UME is close to the crystal. Most importantly, as dissolution is only briefly and transiently induced at each location, the initial dissolution kinetics of an as-grown single crystal surface can be measured, rather than a surface which has undergone significant dissolution (pitting), as in other techniques. Mass transport and kinetics in the system are modelled using finite element method simulations which allows dissolution rate constants to be evaluated. It is found that the kinetics of an ‘as-grown’ crystal are much slower than for a surface that has undergone partial bulk dissolution (mimicking conventional techniques), which can be attributed to a dramatic change in surface morphology as identified by atomic force microscopy (AFM). The ‘as-grown’ (110) surface presents extended terrace structures to the solution which evidently dissolve slowly, whereas a partially dissolved surface has extensive etch features and step sites which greatly enhance dissolution kinetics. This means that crystals such as salicylic acid will show time-dependent dissolution kinetics (fluxes) that are strongly dependent on crystal history, and this needs to be taken into account to fully understand dissolution.


Analytical Chemistry | 2018

Quantitative Framework for Stochastic Nanopore Sensors Using Multiple Channels

Robert A. Lazenby; Florika C. Macazo; Richard F. Wormsbecher; Ryan J. White

Membrane protein channels employed as stochastic sensors offer large signal-to-noise ratios and high specificity in single molecule binding measurements. Stochastic events in a single ion channel system can be measured using current-time traces, which are straightforward to analyze. Signals arising from measurement using multiple ion channels are more complicated to interpret. We show that multiple independent ion channels offer improved detection sensitivity compared to single channel measurements and that increased signal complexity can be accounted for using binding event frequency. More specifically, the leading edge of binding events follows a Poisson point process, which means signals from multiple channels can be superimposed and the association times (between each binding event leading edge), allow for sensitive and quantitative measurements. We expand our calibration to high ligand concentrations and high numbers of ion channels to demonstrate that there is an upper limit of quantification, defined by the time resolution of the measurement. The upper limit is a combination of the instrumental time resolution and the dissociation time of a ligand and protein which limits the number of detectable events. This upper limit also allows us to predict, in general, the measurement requirements needed to observe any process as a Poisson point process. The nanopore-based sensing analysis has wide implications for stochastic sensing platforms that operate using multiple simultaneous superimposable signals.


Physical Chemistry Chemical Physics | 2016

Electrochemical oxidation of dihydronicotinamide adenine dinucleotide (NADH): comparison of highly oriented pyrolytic graphite (HOPG) and polycrystalline boron-doped diamond (pBDD) electrodes

Faduma M. Maddar; Robert A. Lazenby; Anisha N. Patel; Patrick R. Unwin

The electro-oxidation of nicotinamide adenine dinucleotide (NADH) is studied at bare surfaces of highly oriented pyrolytic graphite (HOPG) and semi-metallic polycrystalline boron-doped diamond (pBDD). A comparison of these two carbon electrode materials is interesting because they possess broadly similar densities of electronic states that are much lower than most metal electrodes, but graphite has carbon sp2-hybridization, while in diamond the carbon is sp3-hybridised, with resulting major differences in bulk structure and surface termination. Using cyclic voltammetry (CV), it is shown that NADH oxidation is facile at HOPG surfaces but the reaction products tend to strongly adsorb, which causes rapid deactivation of the electrode activity. This is an important factor that needs to be taken into account when assessing HOPG and its intrinsic activity. It is also shown that NADH itself adsorbs at HOPG, a fact that has not been recognized previously, but has implications for understanding the mechanism of the electro-oxidation process. Although pBDD was found to be less susceptible to surface fouling, pBDD is not immune to deterioration of the electrode response, and the reaction showed more sluggish kinetics on this electrode. Scanning electrochemical cell microscopy (SECCM) highlights a significant voltammetric variation in electroactivity between different crystal surface facets that are presented to solution with a pBDD electrode. The electroactivity of different grains correlates with the local dopant level, as visualized by field emission-scanning electron microscopy. SECCM measurements further prove that the basal plane of HOPG has high activity towards NADH electro-oxidation. These new insights on NADH voltammetry are useful for the design of optimal carbon-based electrodes for NADH electroanalysis.


Chemical Science | 2015

Nucleation, aggregative growth and detachment of metal nanoparticles during electrodeposition at electrode surfaces

Stanley Chi Shing Lai; Robert A. Lazenby; Paul M. Kirkman; Patrick R. Unwin


Analytical Chemistry | 2015

Quad-Barrel Multifunctional Electrochemical and Ion Conductance Probe for Voltammetric Analysis and Imaging

Binoy Paulose Nadappuram; Kim McKelvey; Joshua C. Byers; Aleix G. Güell; Alex W. Colburn; Robert A. Lazenby; Patrick R. Unwin

Collaboration


Dive into the Robert A. Lazenby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan J. White

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Perry

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge