Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert A. Legenstein is active.

Publication


Featured researches published by Robert A. Legenstein.


Nanotechnology | 2013

Integration of nanoscale memristor synapses in neuromorphic computing architectures

Giacomo Indiveri; Bernabé Linares-Barranco; Robert A. Legenstein; George Deligeorgis; Themistoklis Prodromakis

Conventional neuro-computing architectures and artificial neural networks have often been developed with no or loose connections to neuroscience. As a consequence, they have largely ignored key features of biological neural processing systems, such as their extremely low-power consumption features or their ability to carry out robust and efficient computation using massively parallel arrays of limited precision, highly variable, and unreliable components. Recent developments in nano-technologies are making available extremely compact and low power, but also variable and unreliable solid-state devices that can potentially extend the offerings of availing CMOS technologies. In particular, memristors are regarded as a promising solution for modeling key features of biological synapses due to their nanoscale dimensions, their capacity to store multiple bits of information per element and the low energy required to write distinct states. In this paper, we first review the neuro- and neuromorphic computing approaches that can best exploit the properties of memristor and scale devices, and then propose a novel hybrid memristor-CMOS neuromorphic circuit which represents a radical departure from conventional neuro-computing approaches, as it uses memristors to directly emulate the biophysics and temporal dynamics of real synapses. We point out the differences between the use of memristors in conventional neuro-computing architectures and the hybrid memristor-CMOS circuit proposed, and argue how this circuit represents an ideal building block for implementing brain-inspired probabilistic computing paradigms that are robust to variability and fault tolerant by design.


Neural Computation | 2005

What Can a Neuron Learn with Spike-Timing-Dependent Plasticity?

Robert A. Legenstein; Christian Naeger; Wolfgang Maass

Spiking neurons are very flexible computational modules, which can implement with different values of their adjustable synaptic parameters an enormous variety of different transformations F from input spike trains to output spike trains. We examine in this letter the question to what extent a spiking neuron with biologically realistic models for dynamic synapses can be taught via spike-timing-dependent plasticity (STDP) to implement a given transformation F. We consider a supervised learning paradigm where during training, the output of the neuron is clamped to the target signal (teacher forcing). The well-known perceptron convergence theorem asserts the convergence of a simple supervised learning algorithm for drastically simplified neuron models (McCulloch-Pitts neurons). We show that in contrast to the perceptron convergence theorem, no theoretical guarantee can be given for the convergence of STDP with teacher forcing that holds for arbitrary input spike patterns. On the other hand, we prove that average case versions of the perceptron convergence theorem hold for STDP in the case of uncorrelated and correlated Poisson input spike trains and simple models for spiking neurons. For a wide class of cross-correlation functions of the input spike trains, the resulting necessary and sufficient condition can be formulated in terms of linear separability, analogously as the well-known condition of learnability by perceptrons. However, the linear separability criterion has to be applied here to the columns of the correlation matrix of the Poisson input. We demonstrate through extensive computer simulations that the theoretically predicted convergence of STDP with teacher forcing also holds for more realistic models for neurons, dynamic synapses, and more general input distributions. In addition, we show through computer simulations that these positive learning results hold not only for the common interpretation of STDP, where STDP changes the weights of synapses, but also for a more realistic interpretation suggested by experimental data where STDP modulates the initial release probability of dynamic synapses.


PLOS Computational Biology | 2008

A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback

Robert A. Legenstein; Dejan Pecevski; Wolfgang Maass

Reward-modulated spike-timing-dependent plasticity (STDP) has recently emerged as a candidate for a learning rule that could explain how behaviorally relevant adaptive changes in complex networks of spiking neurons could be achieved in a self-organizing manner through local synaptic plasticity. However, the capabilities and limitations of this learning rule could so far only be tested through computer simulations. This article provides tools for an analytic treatment of reward-modulated STDP, which allows us to predict under which conditions reward-modulated STDP will achieve a desired learning effect. These analytical results imply that neurons can learn through reward-modulated STDP to classify not only spatial but also temporal firing patterns of presynaptic neurons. They also can learn to respond to specific presynaptic firing patterns with particular spike patterns. Finally, the resulting learning theory predicts that even difficult credit-assignment problems, where it is very hard to tell which synaptic weights should be modified in order to increase the global reward for the system, can be solved in a self-organizing manner through reward-modulated STDP. This yields an explanation for a fundamental experimental result on biofeedback in monkeys by Fetz and Baker. In this experiment monkeys were rewarded for increasing the firing rate of a particular neuron in the cortex and were able to solve this extremely difficult credit assignment problem. Our model for this experiment relies on a combination of reward-modulated STDP with variable spontaneous firing activity. Hence it also provides a possible functional explanation for trial-to-trial variability, which is characteristic for cortical networks of neurons but has no analogue in currently existing artificial computing systems. In addition our model demonstrates that reward-modulated STDP can be applied to all synapses in a large recurrent neural network without endangering the stability of the network dynamics.


knowledge discovery and data mining | 2010

Combining predictions for accurate recommender systems

Michael Jahrer; Andreas Töscher; Robert A. Legenstein

We analyze the application of ensemble learning to recommender systems on the Netflix Prize dataset. For our analysis we use a set of diverse state-of-the-art collaborative filtering (CF) algorithms, which include: SVD, Neighborhood Based Approaches, Restricted Boltzmann Machine, Asymmetric Factor Model and Global Effects. We show that linearly combining (blending) a set of CF algorithms increases the accuracy and outperforms any single CF algorithm. Furthermore, we show how to use ensemble methods for blending predictors in order to outperform a single blending algorithm. The dataset and the source code for the ensemble blending are available online.


Neural Computation | 2010

Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons

Lars Büsing; Benjamin Schrauwen; Robert A. Legenstein

Reservoir computing (RC) systems are powerful models for online computations on input sequences. They consist of a memoryless readout neuron that is trained on top of a randomly connected recurrent neural network. RC systems are commonly used in two flavors: with analog or binary (spiking) neurons in the recurrent circuits. Previous work indicated a fundamental difference in the behavior of these two implementations of the RC idea. The performance of an RC system built from binary neurons seems to depend strongly on the network connectivity structure. In networks of analog neurons, such clear dependency has not been observed. In this letter, we address this apparent dichotomy by investigating the influence of the network connectivity (parameterized by the neuron in-degree) on a family of network models that interpolates between analog and binary networks. Our analyses are based on a novel estimation of the Lyapunov exponent of the network dynamics with the help of branching process theory, rank measures that estimate the kernel quality and generalization capabilities of recurrent networks, and a novel mean field predictor for computational performance. These analyses reveal that the phase transition between ordered and chaotic network behavior of binary circuits qualitatively differs from the one in analog circuits, leading to differences in the integration of information over short and long timescales. This explains the decreased computational performance observed in binary circuits that are densely connected. The mean field predictor is also used to bound the memory function of recurrent circuits of binary neurons.


The Journal of Neuroscience | 2010

A Reward-Modulated Hebbian Learning Rule Can Explain Experimentally Observed Network Reorganization in a Brain Control Task

Robert A. Legenstein; Steven M. Chase; Andrew B. Schwartz; Wolfgang Maass

It has recently been shown in a brain–computer interface experiment that motor cortical neurons change their tuning properties selectively to compensate for errors induced by displaced decoding parameters. In particular, it was shown that the three-dimensional tuning curves of neurons whose decoding parameters were reassigned changed more than those of neurons whose decoding parameters had not been reassigned. In this article, we propose a simple learning rule that can reproduce this effect. Our learning rule uses Hebbian weight updates driven by a global reward signal and neuronal noise. In contrast to most previously proposed learning rules, this approach does not require extrinsic information to separate noise from signal. The learning rule is able to optimize the performance of a model system within biologically realistic periods of time under high noise levels. Furthermore, when the model parameters are matched to data recorded during the brain–computer interface learning experiments described above, the model produces learning effects strikingly similar to those found in the experiments.


The Journal of Neuroscience | 2011

Branch-Specific Plasticity Enables Self-Organization of Nonlinear Computation in Single Neurons

Robert A. Legenstein; Wolfgang Maass

It has been conjectured that nonlinear processing in dendritic branches endows individual neurons with the capability to perform complex computational operations that are needed to solve for example the binding problem. However, it is not clear how single neurons could acquire such functionality in a self-organized manner, because most theoretical studies of synaptic plasticity and learning concentrate on neuron models without nonlinear dendritic properties. In the meantime, a complex picture of information processing with dendritic spikes and a variety of plasticity mechanisms in single neurons has emerged from experiments. In particular, new experimental data on dendritic branch strength potentiation in rat hippocampus have not yet been incorporated into such models. In this article, we investigate how experimentally observed plasticity mechanisms, such as depolarization-dependent spike-timing-dependent plasticity and branch-strength potentiation, could be integrated to self-organize nonlinear neural computations with dendritic spikes. We provide a mathematical proof that, in a simplified setup, these plasticity mechanisms induce a competition between dendritic branches, a novel concept in the analysis of single neuron adaptivity. We show via computer simulations that such dendritic competition enables a single neuron to become member of several neuronal ensembles and to acquire nonlinear computational capabilities, such as the capability to bind multiple input features. Hence, our results suggest that nonlinear neural computation may self-organize in single neurons through the interaction of local synaptic and dendritic plasticity mechanisms.


Cerebral Cortex | 2014

Emergence of Complex Computational Structures From Chaotic Neural Networks Through Reward-Modulated Hebbian Learning

Gregor M. Hoerzer; Robert A. Legenstein; Wolfgang Maass

This paper addresses the question how generic microcircuits of neurons in different parts of the cortex can attain and maintain different computational specializations. We show that if stochastic variations in the dynamics of local microcircuits are correlated with signals related to functional improvements of the brain (e.g. in the control of behavior), the computational operation of these microcircuits can become optimized for specific tasks such as the generation of specific periodic signals and task-dependent routing of information. Furthermore, we show that working memory can autonomously emerge through reward-modulated Hebbian learning, if needed for specific tasks. Altogether, our results suggest that reward-modulated synaptic plasticity can not only optimize the network parameters for specific computational tasks, but also initiate a functional rewiring that re-programs microcircuits, thereby generating diverse computational functions in different generic cortical microcircuits. On a more general level, this work provides a new perspective for a standard model for computations in generic cortical microcircuits (liquid computing model). It shows that the arguably most problematic assumption of this model, the postulate of a teacher that trains neural readouts through supervised learning, can be eliminated. We show that generic networks of neurons can learn numerous biologically relevant computations through trial and error.


PLOS Computational Biology | 2010

Reinforcement Learning on Slow Features of High-Dimensional Input Streams

Robert A. Legenstein; Niko Wilbert; Laurenz Wiskott

Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. However, most algorithms for reward-based learning are only applicable if the dimensionality of the state-space is sufficiently small or its structure is sufficiently simple. Therefore, the question arises how the problem of learning on high-dimensional data is solved in the brain. In this article, we propose a biologically plausible generic two-stage learning system that can directly be applied to raw high-dimensional input streams. The system is composed of a hierarchical slow feature analysis (SFA) network for preprocessing and a simple neural network on top that is trained based on rewards. We demonstrate by computer simulations that this generic architecture is able to learn quite demanding reinforcement learning tasks on high-dimensional visual input streams in a time that is comparable to the time needed when an explicit highly informative low-dimensional state-space representation is given instead of the high-dimensional visual input. The learning speed of the proposed architecture in a task similar to the Morris water maze task is comparable to that found in experimental studies with rats. This study thus supports the hypothesis that slowness learning is one important unsupervised learning principle utilized in the brain to form efficient state representations for behavioral learning.


Nature Communications | 2016

Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses

Alexander Serb; Johannes Bill; Ali Khiat; Radu Berdan; Robert A. Legenstein; Themis Prodromakis

In an increasingly data-rich world the need for developing computing systems that cannot only process, but ideally also interpret big data is becoming continuously more pressing. Brain-inspired concepts have shown great promise towards addressing this need. Here we demonstrate unsupervised learning in a probabilistic neural network that utilizes metal-oxide memristive devices as multi-state synapses. Our approach can be exploited for processing unlabelled data and can adapt to time-varying clusters that underlie incoming data by supporting the capability of reversible unsupervised learning. The potential of this work is showcased through the demonstration of successful learning in the presence of corrupted input data and probabilistic neurons, thus paving the way towards robust big-data processors.

Collaboration


Dive into the Robert A. Legenstein's collaboration.

Top Co-Authors

Avatar

Wolfgang Maass

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

David Kappel

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Stefan Habenschuss

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Bellec

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Johannes Bill

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Santosh Vempala

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven M. Chase

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Dejan Pecevski

Graz University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge