Robert A. Screaton
Children's Hospital of Eastern Ontario
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert A. Screaton.
Nature | 2005
Seung Hoi Koo; Lawrence Flechner; Ling Qi; Xinmin Zhang; Robert A. Screaton; Shawn Jeffries; Susan Hedrick; Wu Xu; Fayçal Boussouar; Paul K. Brindle; Hiroshi Takemori; Marc Montminy
Glucose homeostasis is regulated systemically by hormones such as insulin and glucagon, and at the cellular level by energy status. Glucagon enhances glucose output from the liver during fasting by stimulating the transcription of gluconeogenic genes via the cyclic AMP-inducible factor CREB (CRE binding protein). When cellular ATP levels are low, however, the energy-sensing kinase AMPK inhibits hepatic gluconeogenesis through an unknown mechanism. Here we show that hormonal and energy-sensing pathways converge on the coactivator TORC2 (transducer of regulated CREB activity 2) to modulate glucose output. Sequestered in the cytoplasm under feeding conditions, TORC2 is dephosphorylated and transported to the nucleus where it enhances CREB-dependent transcription in response to fasting stimuli. Conversely, signals that activate AMPK attenuate the gluconeogenic programme by promoting TORC2 phosphorylation and blocking its nuclear accumulation. Individuals with type 2 diabetes often exhibit fasting hyperglycaemia due to elevated gluconeogenesis; compounds that enhance TORC2 phosphorylation may offer therapeutic benefits in this setting.
Cell | 2004
Robert A. Screaton; Michael D. Conkright; Yoshiko Katoh; Jennifer L. Best; Gianluca Canettieri; Shawn Jeffries; Ernesto Guzman; Sherry Niessen; John R. Yates; Hiroshi Takemori; Mitsuhiro Okamoto; Marc Montminy
Elevations in circulating glucose and gut hormones during feeding promote pancreatic islet cell viability in part via the calcium- and cAMP-dependent activation of the transcription factor CREB. Here, we describe a signaling module that mediates the synergistic effects of these pathways on cellular gene expression by stimulating the dephosphorylation and nuclear entry of TORC2, a CREB coactivator. This module consists of the calcium-regulated phosphatase calcineurin and the Ser/Thr kinase SIK2, both of which associate with TORC2. Under resting conditions, TORC2 is sequestered in the cytoplasm via a phosphorylation-dependent interaction with 14-3-3 proteins. Triggering of the calcium and cAMP second messenger pathways by glucose and gut hormones disrupts TORC2:14-3-3 complexes via complementary effects on TORC2 dephosphorylation; calcium influx increases calcineurin activity, whereas cAMP inhibits SIK2 kinase activity. Our results illustrate how a phosphatase/kinase module connects two signaling pathways in response to nutrient and hormonal cues.
Science | 2006
Ling Qi; Jose Heredia; Judith Y. Altarejos; Robert A. Screaton; Naomi Goebel; Sherry Niessen; Ian MacLeod; Chong Wee Liew; Rohit N. Kulkarni; James R. Bain; Christopher B. Newgard; Michael C. Nelson; Ronald M. Evans; John R. Yates; Marc Montminy
During fasting, increased concentrations of circulating catecholamines promote the mobilization of lipid stores from adipose tissue in part by phosphorylating and inactivating acetyl–coenzyme A carboxylase (ACC), the rate-limiting enzyme in fatty acid synthesis. Here, we describe a parallel pathway, in which the pseudokinase Tribbles 3 (TRB3), whose abundance is increased during fasting, stimulates lipolysis by triggering the degradation of ACC in adipose tissue. TRB3 promoted ACC ubiquitination through an association with the E3 ubiquitin ligase constitutive photomorphogenic protein 1 (COP1). Indeed, adipocytes deficient in TRB3 accumulated larger amounts of ACC protein than did wild-type cells. Because transgenic mice expressing TRB3 in adipose tissue are protected from diet-induced obesity due to enhanced fatty acid oxidation, these results demonstrate how phosphorylation and ubiquitination pathways converge on a key regulator of lipid metabolism to maintain energy homeostasis.
Nature | 2012
Yiguo Wang; Gang Li; Jason Goode; José C. Paz; Kunfu Ouyang; Robert A. Screaton; Wolfgang H. Fischer; Ju Chen; Ira Tabas; Marc Montminy
In the fasted state, increases in circulating glucagon promote hepatic glucose production through induction of the gluconeogenic program. Triggering of the cyclic AMP pathway increases gluconeogenic gene expression via the de-phosphorylation of the CREB co-activator CRTC2 (ref. 1). Glucagon promotes CRTC2 dephosphorylation in part through the protein kinase A (PKA)-mediated inhibition of the CRTC2 kinase SIK2. A number of Ser/Thr phosphatases seem to be capable of dephosphorylating CRTC2 (refs 2, 3), but the mechanisms by which hormonal cues regulate these enzymes remain unclear. Here we show in mice that glucagon stimulates CRTC2 dephosphorylation in hepatocytes by mobilizing intracellular calcium stores and activating the calcium/calmodulin-dependent Ser/Thr-phosphatase calcineurin (also known as PP3CA). Glucagon increased cytosolic calcium concentration through the PKA-mediated phosphorylation of inositol-1,4,5-trisphosphate receptors (InsP3Rs), which associate with CRTC2. After their activation, InsP3Rs enhanced gluconeogenic gene expression by promoting the calcineurin-mediated dephosphorylation of CRTC2. During feeding, increases in insulin signalling reduced CRTC2 activity via the AKT-mediated inactivation of InsP3Rs. InsP3R activity was increased in diabetes, leading to upregulation of the gluconeogenic program. As hepatic downregulation of InsP3Rs and calcineurin improved circulating glucose levels in insulin resistance, these results demonstrate how interactions between cAMP and calcium pathways at the level of the InsP3R modulate hepatic glucose production under fasting conditions and in diabetes.
Cell Metabolism | 2009
Accalia Fu; Andy Cheuk-Him Ng; Chantal Depatie; Nadeeja Wijesekara; Ying He; Gen-Sheng Wang; Nabeel Bardeesy; Fraser W. Scott; Rhian M. Touyz; Michael B. Wheeler; Robert A. Screaton
The Lkb1 tumor suppressor exerts its biological effects through phosphorylation and consequent activation of the AMP kinase (AMPK) family. Extensive genetic and biochemical evidence supports a role for Lkb1 in cell cycle arrest, establishment of cell polarity, and cellular energy metabolism. However, the role of Lkb1 and the AMPK family in beta cell function in vivo has not been established. We generated conditional knockout mice with a deletion of the Lkb1 gene in the beta cell compartment of pancreatic islets; these mice display improved glucose tolerance and protection against diet-induced hyperglycemia. Lkb1(-/-) beta cells are hypertrophic because of elevated mTOR activity; they also proliferate more and secrete more insulin in response to glucose. These data indicate that inhibiting Lkb1 activity in beta cells may facilitate beta cell expansion and glucose tolerance in vivo.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Robert A. Screaton; Stephan Kiessling; Owen J. Sansom; Catherine B. Millar; Kathryn Maddison; Adrian Bird; Alan Richard Clarke; Steven M. Frisch
Fas-associated death domain protein (FADD) is an adaptor protein bridging death receptors with initiator caspases. Thus, its function and localization are assumed to be cytoplasmic, although the localization of endogenous FADD has not been reported. Surprisingly, the data presented here demonstrate that FADD is mainly nuclear in several adherent cell lines. Its accumulation in the nucleus and export to the cytoplasm required the phosphorylation site Ser-194, which was also required for its interaction with the nucleocytoplasmic shuttling protein exportin-5. Within the nucleus, FADD interacted with the methyl-CpG binding domain protein 4 (MBD4), which excises thymine from GT mismatches in methylated regions of chromatin. The MBD4-interacting mismatch repair factor MLH1 was also found in a complex with FADD. The FADD–MBD4 interaction involved the death effector domain of FADD and a region of MBD4 adjacent to the glycosylase domain. The FADD-binding region of MBD4 was downstream of a frameshift mutation that occurs in a significant fraction of human colorectal carcinomas. Consistent with the idea that MBD4 can signal to an apoptotic effector, MBD4 regulated DNA damage-, Fas ligand-, and cell detachment-induced apoptosis. The nuclear localization of FADD and its interaction with a genome surveillance/DNA repair protein that can regulate apoptosis suggests a novel function of FADD distinct from direct participation in death receptor signaling complexes.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Deidre Jansson; Andy Cheuk-Him Ng; Accalia Fu; Chantal Depatie; Mufida Al Azzabi; Robert A. Screaton
CREB is a cAMP- and calcium-responsive transcriptional activator that is required for islet beta cell proliferation and survival. Glucose and incretin hormones elicit beta cell insulin secretion and promote synergistic CREB activity by inducing the nuclear relocalization of TORC2 (also known as Crtc2), a coactivator for CREB. In islet cells under basal conditions when CREB activity is low, TORC2 is phosphorylated and sequestered in the cytoplasm by 14-3-3 proteins. In response to feeding stimuli, TORC2 is dephosphorylated, enters the nucleus, and binds to CREB located at target gene promoters. The dephosphorylation of TORC2 at Ser-171 in response to cAMP is insufficient to account for the dynamics of TORC2 localization and CREB activity in islet cells. Here, we identify Ser-275 of TORC2 as a 14-3-3 binding site that is phosphorylated under low glucose conditions and which becomes dephosphorylated by calcineurin in response to glucose influx. Dephosphorylation of Ser-275 is essential for both glucose and cAMP-mediated activation of CREB in beta cells and islets. Using a cell-based screen of 180 human protein kinases, we identified MARK2, a member of the AMPK family of Ser/Thr kinases, as a Ser-275 kinase that blocks TORC2:CREB activity. Taken together, these data provide the mechanistic underpinning for how cAMP and glucose cooperatively promote a transcriptional program critical for islet cell survival, and identifies MARK2 as a potential target for diabetes treatment.
Annals of Neurology | 2012
Melissa Bowerman; Kathryn J. Swoboda; John Paul Michalski; Gen Sheng Wang; Courtney Reeks; Ariane Beauvais; Kelley J. Murphy; John Woulfe; Robert A. Screaton; Fraser W. Scott; Rashmi Kothary
Spinal muscular atrophy (SMA) is the number 1 genetic killer of young children. It is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Although SMA is primarily a motor neuron disease, metabolism abnormalities such as metabolic acidosis, abnormal fatty acid metabolism, hyperlipidemia, and hyperglycemia have been reported in SMA patients. We thus initiated an in‐depth analysis of glucose metabolism in SMA.
Molecular and Cellular Endocrinology | 2013
Accalia Fu; Chandra E. Eberhard; Robert A. Screaton
Pharmacological activation of AMP activated kinase (AMPK) by metformin has proven to be a beneficial therapeutic approach for the treatment of type II diabetes. Despite improved glucose regulation achieved by administration of small molecule activators of AMPK, the potential negative impact of enhanced AMPK activity on insulin secretion by the pancreatic beta cell is an important consideration. In this review, we discuss our current understanding of the role of AMPK in central functions of the pancreatic beta cell, including glucose-stimulated insulin secretion (GSIS), proliferation, and survival. In addition we discuss the controversy surrounding the role of AMPK in insulin secretion, underscoring the merits and caveats of methods used to date.
Science Signaling | 2014
Matthew Norton; Andy Cheuk-Him Ng; Stephen Baird; Ariane Dumoulin; Timothy E. Shutt; Nancy Mah; Miguel A. Andrade-Navarro; Heidi M. McBride; Robert A. Screaton
ROMO1 links the oxidative state of the cell to changes in mitochondrial shape and function. Fueling Fusion Mitochondria are dynamic organelles that undergo fusion or fission. In response to cell death–inducing stimuli, mitochondria undergo fragmentation. OPA1 is a guanosine triphosphatase (GTPase) that is present as a transmembrane protein in the inner mitochondrial membrane and as a cleaved form in the intermembrane space; a balance in the abundance of both forms is required for OPA1 to promote mitochondrial fusion. Norton et al. identified ROMO1 as a regulator of mitochondrial morphology that, in response to reactive oxygen species, was oxidized and formed inactive oligomers. Cells lacking ROMO1 had more of the cleaved form of OPA1, showed an increase in fragmented mitochondria, and were more sensitive to cell death–inducing stimuli. Thus, ROMO1 acts as a link between the oxidative state of the cell and the changes in mitochondrial shape and function. The dynamics of mitochondria undergoing fusion and fragmentation govern many mitochondrial functions, including the regulation of cell survival. Although the machinery that catalyzes fusion and fragmentation has been well described, less is known about the signaling components that regulate these phenomena. We performed a genome-wide RNA interference (RNAi) screen and identified reactive oxygen species modulator 1 (ROMO1) as a redox-regulated protein required for mitochondrial fusion and normal cristae morphology. We showed that oxidative stress promoted the formation of high–molecular weight ROMO1 complexes and that knockdown of ROMO1 promoted mitochondrial fission. ROMO1 was essential for the oligomerization of the inner membrane guanosine triphosphatase (GTPase) OPA1, which is required to maintain the integrity of cristae junctions. As a consequence, cells lacking ROMO1 displayed fragmented mitochondria and loss of cristae, causing impaired mitochondrial respiration and increased sensitivity to cell death stimuli. Together, our data identify ROMO1 as a critical molecular switch that couples metabolic stress and mitochondrial morphology, linking mitochondrial fusion to cell survival.