Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert A. Steiner is active.

Publication


Featured researches published by Robert A. Steiner.


The Journal of Neuroscience | 2005

Activation of Gonadotropin-Releasing Hormone Neurons by Kisspeptin as a Neuroendocrine Switch for the Onset of Puberty

Seong Kyu Han; Michelle L. Gottsch; Kathy J. Lee; Simina M. Popa; Jeremy T. Smith; Sonya K. Jakawich; Donald K. Clifton; Robert A. Steiner; Allan E. Herbison

We examined the role of kisspeptin and its receptor, the G-protein-coupled receptor GPR54, in governing the onset of puberty in the mouse. In the adult male and female mouse, kisspeptin (10–100 nm) evoked a remarkably potent, long-lasting depolarization of >90% of gonadotropin-releasing hormone (GnRH)–green fluorescent protein neurons in situ. In contrast, in juvenile [postnatal day 8 (P8) to P19] and prepubertal (P26–P33) male mice, kisspeptin activated only 27 and 44% of GnRH neurons, respectively. This developmental recruitment of GnRH neurons into a kisspeptin-responsive pool was paralleled by an increase in the ability of centrally administered kisspeptin to evoke luteinizing hormone secretion in vivo. To learn more about the mechanisms through which kisspeptin–GPR54 signaling at the GnRH neuron may change over postnatal development, we performed quantitative in situ hybridization for kisspeptin and GPR54 transcripts. Approximately 90% of GnRH neurons were found to express GPR54 mRNA in both juvenile and adult mice, without a detectable difference in the mRNA content between the age groups. In contrast, the expression of KiSS-1 mRNA increased dramatically across the transition from juvenile to adult life in the anteroventral periventricular nucleus (AVPV; p < 0.001). These results demonstrate that kisspeptin exerts a potent depolarizing effect on the excitability of almost all adult GnRH neurons and that the responsiveness of GnRH neurons to kisspeptin increases over postnatal development. Together, these observations suggest that activation of GnRH neurons by kisspeptin at puberty reflects a dual process involving an increase in kisspeptin input from the AVPV and a post-transcriptional change in GPR54 signaling within the GnRH neuron.


Neuroendocrinology | 2004

KISSPEPTIN ACTIVATION OF GONADOTROPIN RELEASING HORMONE NEURONS AND REGULATION OF KISS-1 MRNA IN THE MALE RAT

Michael S. Irwig; Gregory S. Fraley; Jeremy T. Smith; Blake V. Acohido; Simina M. Popa; Matthew J. Cunningham; Michelle L. Gottsch; Donald K. Clifton; Robert A. Steiner

The KiSS-1 gene codes for a family of neuropeptides called kisspeptins which bind to the G-protein-coupled receptor GPR54. To assess the possible effects of kisspeptins on gonadotropin secretion, we injected kisspeptin-52 into the lateral cerebral ventricles of adult male rats and found that kisspeptin-52 increased the serum levels of luteinizing hormone (p < 0.05). To determine whether the kisspeptin-52-induced stimulation of luteinizing hormone secretion was mediated by gonadotropin-releasing hormone (GnRH), we pretreated adult male rats with a GnRH antagonist (acyline), then challenged the animals with intracerebroventricularly administered kisspeptin-52. The GnRH antagonist blocked the kisspeptin-52-induced increase in luteinizing hormone. To examine whether kisspeptins stimulate transcriptional activity in GnRH neurons, we administered kisspeptin-52 intracerebroventricularly and found by immunocytochemistry that 86% of the GnRH neurons coexpressed Fos 2 h after the kisspeptin-52 challenge, whereas fewer than 1% of the GnRH neurons expressed Fos following injection of the vehicle alone (p < 0.001). To assess whether kisspeptins can directly act on GnRH neurons, we used double-label in situ hybridization and found that 77% of the GnRH neurons coexpress GPR54 mRNA. Finally, to determine whether KiSS-1 gene expression is regulated by gonadal hormones, we measured KiSS-1 mRNA levels by single-label in situ hybridization in intact and castrated males and found significantly higher levels in the arcuate nucleus of castrates. These results demonstrate that GnRH neurons are direct targets for regulation by kisspeptins and that KiSS-1 mRNA is regulated by gonadal hormones, suggesting that KiSS-1 neurons play an important role in the feedback regulation of gonadotropin secretion.


Endocrine Reviews | 2009

Kisspeptin Signaling in the Brain

Amy E. Oakley; Donald K. Clifton; Robert A. Steiner

Kisspeptin (a product of the Kiss1 gene) and its receptor (GPR54 or Kiss1r) have emerged as key players in the regulation of reproduction. Mutations in humans or genetically targeted deletions in mice of either Kiss1 or Kiss1r cause profound hypogonadotropic hypogonadism. Neurons that express Kiss1/kisspeptin are found in discrete nuclei in the hypothalamus, as well as other brain regions in many vertebrates, and their distribution, regulation, and function varies widely across species. Kisspeptin neurons directly innervate and stimulate GnRH neurons, which are the final common pathway through which the brain regulates reproduction. Kisspeptin neurons are sexually differentiated with respect to cell number and transcriptional activity in certain brain nuclei, and some kisspeptin neurons express other cotransmitters, including dynorphin and neurokinin B (whose physiological significance is unknown). Kisspeptin neurons express the estrogen receptor and the androgen receptor, and these cells are direct targets for the action of gonadal steroids in both male and female animals. Kisspeptin signaling in the brain has been implicated in mediating the negative feedback action of sex steroids on gonadotropin secretion, generating the preovulatory GnRH/LH surge, triggering and guiding the tempo of sexual maturation at puberty, controlling seasonal reproduction, and restraining reproductive activity during lactation. Kisspeptin signaling may also serve diverse functions outside of the classical realm of reproductive neuroendocrinology, including the regulation of metastasis in certain cancers, vascular dynamics, placental physiology, and perhaps even higher-order brain function.


The Journal of Neuroscience | 2009

REGULATION OF GONADOTROPIN-RELEASING HORMONE SECRETION BY KISSPEPTIN/DYNORPHIN/NEUROKININ B NEURONS IN THE ARCUATE NUCLEUS OF THE MOUSE

Víctor M. Navarro; Michelle L. Gottsch; Charles Chavkin; Hiroaki Okamura; Donald K. Clifton; Robert A. Steiner

Kisspeptin is encoded by the Kiss1 gene, and kisspeptin signaling plays a critical role in reproduction. In rodents, kisspeptin neurons in the arcuate nucleus (Arc) provide tonic drive to gonadotropin-releasing hormone (GnRH) neurons, which in turn supports basal luteinizing hormone (LH) secretion. Our objectives were to determine whether preprodynorphin (Dyn) and neurokinin B (NKB) are coexpressed in Kiss1 neurons in the mouse and to evaluate its physiological significance. Using in situ hybridization, we found that Kiss1 neurons in the Arc of female mice not only express the Dyn and NKB genes but also the NKB receptor gene (NK3) and the Dyn receptor [the κ opioid receptor (KOR)] gene. We also found that expression of the Dyn, NKB, KOR, and NK3 in the Arc are inhibited by estradiol, as has been established for Kiss1, and confirmed that Dyn and NKB inhibit LH secretion. Moreover, using Dyn and KOR knock-out mice, we found that long-term disruption of Dyn/KOR signaling compromises the rise of LH after ovariectomy. We propose a model whereby NKB and dynorphin act autosynaptically on kisspeptin neurons in the Arc to synchronize and shape the pulsatile secretion of kisspeptin and drive the release of GnRH from fibers in the median eminence.


Journal of Neuroendocrinology | 2006

KiSS-1 neurones are direct targets for leptin in the ob/ob mouse.

Jeremy T. Smith; Blake V. Acohido; Donald K. Clifton; Robert A. Steiner

Leptin is an adipocyte‐derived hormone that acts on the hypothalamus to influence feeding, metabolism and reproduction, but the cellular and molecular targets for the action of leptin in the brain have yet to be fully elucidated. Kisspeptins are encoded by the Kiss1 gene, which is expressed in the hypothalamus and has been implicated in the neuroendocrine regulation of gonadotrophin‐releasing hormone secretion. We tested the hypothesis that kisspeptin‐expressing neurones are targets for leptin. First, we examined whether leptin regulates the expression of Kiss1 by comparing levels of KiSS‐1 mRNA in the arcuate nucleus among groups of mice having different circulating levels of leptin: (i) wild‐type (WT); (ii) leptin‐deficient ob/ob; and (iii) ob/ob mice treated with leptin. All mice were castrated to control for endogenous concentrations of gonadal steroids. KiSS‐1 mRNA was significantly reduced in ob/ob compared to WT mice and levels of KiSS‐1 mRNA in ob/ob mice treated with leptin were increased, but not fully restored to that found in WT animals. Second, we performed double‐label in situ hybridisation for KiSS‐1 mRNA and the leptin receptor (Ob‐Rb) mRNA and found that almost one‐half (approximately 40%) of KiSS‐1 mRNA‐expressing cells in the arcuate nucleus expressed Ob‐Rb mRNA. These results demonstrate that KiSS‐1 neurones are direct targets for regulation by leptin and suggest that the reproductive deficits associated with leptin‐deficient states may be attributable, in part, to diminished expression of Kiss1.


The Journal of Neuroscience | 2010

Neurokinin B and Dynorphin A in Kisspeptin Neurons of the Arcuate Nucleus Participate in Generation of Periodic Oscillation of Neural Activity Driving Pulsatile Gonadotropin-Releasing Hormone Secretion in the Goat

Yoshihiro Wakabayashi; Tomoaki Nakada; Ken Murata; Satoshi Ohkura; Kazutaka Mogi; Víctor M. Navarro; Donald K. Clifton; Yuji Mori; Hiroko Tsukamura; Kei-ichiro Maeda; Robert A. Steiner; Hiroaki Okamura

Gonadotropin-releasing hormone (GnRH) neurons in the basal forebrain are the final common pathway through which the brain regulates reproduction. GnRH secretion occurs in a pulsatile manner, and indirect evidence suggests the kisspeptin neurons in the arcuate nucleus (ARC) serve as the central pacemaker that drives pulsatile GnRH secretion. The purpose of this study was to investigate the possible coexpression of kisspeptin, neurokinin B (NKB), and dynorphin A (Dyn) in neurons of the ARC of the goat and evaluate their potential roles in generating GnRH pulses. Using double and triple labeling, we confirmed that all three neuropeptides are coexpressed in the same population of neurons. Using electrophysiological techniques to record multiple-unit activity (MUA) in the medial basal hypothalamus, we found that bursts of MUA occurred at regular intervals in ovariectomized animals and that these repetitive bursts (volleys) were invariably associated with discrete pulses of luteinizing hormone (LH) (and by inference GnRH). Moreover, the frequency of MUA volleys was reduced by gonadal steroids, suggesting that the volleys reflect the rhythmic discharge of steroid-sensitive neurons that regulate GnRH secretion. Finally, we observed that central administration of Dyn-inhibit MUA volleys and pulsatile LH secretion, whereas NKB induced MUA volleys. These observations are consistent with the hypothesis that kisspeptin neurons in the ARC drive pulsatile GnRH and LH secretion, and suggest that NKB and Dyn expressed in those neurons are involved in the process of generating the rhythmic discharge of kisspeptin.


The Journal of Neuroscience | 2009

DISCOVERY OF POTENT KISSPEPTIN ANTAGONISTS DELINEATE PHYSIOLOGICAL MECHANISMS OF GONADOTROPIN REGULATION

Antonia K. Roseweir; Alexander S. Kauffman; Jeremy T. Smith; Kathryn A. Guerriero; Kevin Morgan; Justyna Pielecka-Fortuna; Rafael Pineda; Michelle L. Gottsch; Manuel Tena-Sempere; Suzanne M. Moenter; Ei Terasawa; Iain J. Clarke; Robert A. Steiner; Robert P. Millar

Neurons that produce gonadotropin-releasing hormone (GnRH) are the final common pathway by which the brain regulates reproduction. GnRH neurons are regulated by an afferent network of kisspeptin-producing neurons. Kisspeptin binds to its cognate receptor on GnRH neurons and stimulates their activity, which in turn provides an obligatory signal for GnRH secretion, thus gating down-stream events supporting reproduction. We have developed kisspeptin antagonists to facilitate the direct determination of the role of kisspeptin neurons in the neuroendocrine regulation of reproduction. In vitro and in vivo studies of analogues of kisspeptin-10 with amino substitutions have identified several potent and specific antagonists. A selected antagonist was shown to inhibit the firing of GnRH neurons in the brain of the mouse and to reduce pulsatile GnRH secretion in female pubertal monkeys; the later supporting a key role of kisspeptin in puberty onset. This analog also inhibited the kisspeptin-induced release of luteinizing hormone (LH) in rats and mice and blocked the postcastration rise in LH in sheep, rats, and mice, suggesting that kisspeptin neurons mediate the negative feedback effect of sex steroids on gonadotropin secretion in mammals. The development of kisspeptin antagonists provides a valuable tool for investigating the physiological and pathophysiological roles of kisspeptin in the regulation of reproduction and could offer a unique therapeutic agent for treating hormone-dependent disorders of reproduction, including precocious puberty, endometriosis, and metastatic prostate cancer.


Endocrinology | 1998

The Stimulatory Effect of Leptin on the Neuroendocrine Reproductive Axis of the Monkey

Patricia D. Finn; Matthew J. Cunningham; K.-Y. Francis Pau; Harold G. Spies; Donald K. Clifton; Robert A. Steiner

Leptin acts as a metabolic activator of the neuroendocrine reproductive axis in several rodent species, but whether leptin plays a similar role in primates is unknown. To explore this question, we examined the effects of leptin on gonadotropin and testosterone secretion in male rhesus monkeys that were fasted for 2 days. Mean plasma levels of LH and FSH, LH pulse frequency, and LH pulse amplitude were significantly higher in leptin-treated animals compared with saline-treated controls during the second day of the fast. To identify targets for leptin’s action, we used in situ hybridization and computerized imaging to map leptin receptor (Ob-R) messenger RNA (mRNA) distribution. Ob-R mRNA was observed in the anterior pituitary and several areas of the brain, including the arcuate and ventromedial nuclei of the hypothalamus. Ob-R mRNA was coexpressed in both POMC and neuropeptide Y neurons in the arcuate nucleus, whereas little or no coexpression of Ob-R mRNA was evident in GnRH neurons. These results sugges...


The Journal of Neuroscience | 2007

The role of kisspeptin-GPR54 signaling in the tonic regulation and surge release of gonadotropin-releasing hormone/luteinizing hormone

Heather M. Dungan; Michelle L. Gottsch; Hongkui Zeng; Alexander Gragerov; John E. Bergmann; Demetrios K. Vassilatis; Donald K. Clifton; Robert A. Steiner

The Kiss1 gene codes for kisspeptin, which binds to GPR54, a G-protein-coupled receptor. Kisspeptin and GPR54 are expressed in discrete regions of the forebrain, and they have been implicated in the neuroendocrine regulation of reproduction. Kiss1-expressing neurons are thought to regulate the secretion of gonadotropin-releasing hormone (GnRH) and thus coordinate the estrous cycle in rodents; however, the precise role of kisspeptin–GPR54 signaling in the regulation of gonadotropin secretion is unknown. In this study, we used female mice with deletions in the GPR54 gene [GPR54 knock-outs (KOs)] to test the hypothesis that kisspeptin–GPR54 signaling provides the drive necessary for tonic GnRH/luteinizing hormone (LH) release. We predicted that tonic GnRH/LH secretion would be disrupted in GPR54 KOs and that such animals would be incapable of showing a compensatory rise in LH secretion after ovariectomy. As predicted, we found that GPR54 KO mice do not exhibit a postovariectomy rise in LH, suggesting that tonic GnRH secretion is disrupted in the absence of kisspeptin–GPR54 signaling. We also postulated that kisspeptin–GPR54 signaling is critical for the generation of the estradiol (E)-induced GnRH/LH surge and thus E should be incapable of inducing an LH surge in the absence of GPR54. However, we found that E induced Fos expression in GnRH neurons and produced a GnRH-dependent LH surge in GPR54 KOs. Thus, in mice, kisspeptin–GPR54 signaling is required for the tonic stimulation of GnRH/LH secretion but is not required for generating the E-induced GnRH/LH surge.


American Journal of Physiology-endocrinology and Metabolism | 2011

Interactions between kisspeptin and neurokinin B in the control of GnRH secretion in the female rat

Víctor M. Navarro; Juan M. Castellano; Sarah M. McConkey; Rafael Pineda; Francisco Ruiz-Pino; L. Pinilla; Donald K. Clifton; Manuel Tena-Sempere; Robert A. Steiner

Neurokinin B (NKB) and its cognate receptor neurokinin 3 (NK3R) play a critical role in reproduction. NKB and NK3R are coexpressed with dynorphin (Dyn) and kisspeptin (Kiss1) genes in neurons of the arcuate nucleus (Arc). However, the mechanisms of action of NKB as a cotransmitter with kisspeptin and dynorphin remain poorly understood. We explored the role of NKB in the control of LH secretion in the female rat as follows. 1) We examined the effect of an NKB agonist (senktide, 600 pmol, administered into the lateral cerebral ventricle) on luteinizing hormone (LH) secretion. In the presence of physiological levels of estradiol (E(2)), senktide induced a profound increase in serum levels of LH and a 10-fold increase in the number of Kiss1 neurons expressing c-fos in the Arc (P < 0.01 for both). 2) We mapped the distribution of NKB and NK3R mRNAs in the central forebrain and found that both are widely expressed, with intense expression in several hypothalamic nuclei that control reproduction, including the Arc. 3) We studied the effect of E(2) on the expression of NKB and NK3R mRNAs in the Arc and found that E(2) inhibits the expression of both genes (P < 0.01) and that the expression of NKB and NK3R reaches its nadir on the afternoon of proestrus (when circulating levels of E(2) are high). These observations suggest that NKB/NK3R signaling in Kiss1/NKB/Dyn-producing neurons in the Arc has a pivotal role in the control of gonadotropin-releasing hormone (GnRH)/LH secretion and its regulation by E(2)-dependent negative feedback in the rat.

Collaboration


Dive into the Robert A. Steiner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John G. Hohmann

Allen Institute for Brain Science

View shared research outputs
Top Co-Authors

Avatar

Víctor M. Navarro

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge