Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert A. Yokel is active.

Publication


Featured researches published by Robert A. Yokel.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2007

Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide.

Daniel Krewski; Robert A. Yokel; Evert Nieboer; David R. Borchelt; Joshua T. Cohen; Jean Harry; Sam Kacew; Joan Lindsay; Amal Mahfouz; Virginie Rondeau

Note: This article was originally published with an incorrect version of the Acknowledgments, which appeared on p. 218 of the print version. The correct version of the Acknowledgments appeared on pp. 1–2. The corrected article is available below.


Pharmacology & Toxicology | 2001

Aluminium Toxicokinetics: An Updated MiniReview

Robert A. Yokel; Patrick J. McNamara

This MiniReview updates and expands the MiniReview of aluminium toxicokinetics by Wilhelm et al. published by this journal in 1990. The use of 26Al, analyzed by accelerator mass spectrometry, now enables determination of Al toxicokinetics under physiological conditions. There is concern about aluminium in drinking water. The common sources of aluminium for man are reviewed. Oral Al bioavailability from water appears to be about 0.3%. Food is the primary common source. Al bioavailability from food has not been adequately determined. Industrial and medicinal exposure, and perhaps antiperspirant use, can significantly increase absorbed aluminium. Inhalation bioavailability of airborne soluble Al appears to be about 1.5% in the industrial environment. Al may distribute to the brain from the nasal cavity, but the significance of this exposure route is unknown. Systemic Al bioavailability after single underarm antiperspirant application may be up to 0.012%. All intramuscularly injected Al, e.g. from vaccines, may eventually be absorbed. Al distributes unequally to all tissues. Distribution and renal excretion appear to be enhanced by citrate. Brain uptake of Al may be mediated by Al transferrin and Al citrate complexes. There appears to be carrier-mediated efflux of Al citrate from the brain. Elimination half-lives of years have been reported in man, probably reflecting release from bone. Al elimination is primarily renal with < or = 2% excreted in bile. The contribution of food to absorbed Al needs to be determined to advance our understanding of the major components of Al toxicokinetics.


Journal of Alzheimer's Disease | 2006

Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration

Robert A. Yokel

The etiology of many neurodegenerative diseases has been only partly attributed to acquired traits, suggesting environmental factors may also contribute. Metal dyshomeostasis causes or has been implicated in many neurodegenerative diseases. Metal flux across the blood-brain barrier (the primary route of brain metal uptake) and the choroid plexuses as well as sensory nerve metal uptake from the nasal cavity are reviewed. Transporters that have been described at the blood-brain barrier are listed to illustrate the extensive possibilities for moving substances into and out of the brain. The controversial role of aluminum in Alzheimers disease, evidence suggesting brain aluminum uptake by transferrin-receptor mediated endocytosis and of aluminum citrate by system Xc;{-} and an organic anion transporter, and results suggesting transporter-mediated aluminum brain efflux are reviewed. The ability of manganese to produce a parkinsonism-like syndrome, evidence suggesting manganese uptake by transferrin- and non-transferrin-dependent mechanisms which may include store-operated calcium channels, and the lack of transporter-mediated manganese brain efflux, are discussed. The evidence for transferrin-dependent and independent mechanisms of brain iron uptake is presented. The copper transporters, ATP7A and ATP7B, and their roles in Menkes and Wilsons diseases, are summarized. Brain zinc uptake is facilitated by L- and D-histidine, but a transporter, if involved, has not been identified. Brain lead uptake may involve a non-energy-dependent process, store-operated calcium channels, and/or an ATP-dependent calcium pump. Methyl mercury can form a complex with L-cysteine that mimics methionine, enabling its transport by the L system. The putative roles of zinc transporters, ZnT and Zip, in regulating brain zinc are discussed. Although brain uptake mechanisms for some metals have been identified, metal efflux from the brain has received little attention, preventing integration of all processes that contribute to brain metal concentrations.


Neurotoxicology | 2003

Manganese distribution across the blood-brain barrier. I. Evidence for carrier-mediated influx of manganese citrate as well as manganese and manganese transferrin

Janelle S. Crossgrove; David D. Allen; Bonny L. Bukaveckas; Susan S. Rhineheimer; Robert A. Yokel

Manganese (Mn) is an essential element and a neurotoxicant. Regulation of Mn movement across the blood-brain barrier (BBB) contributes to whether the brain Mn concentration is functional or toxic. In plasma, Mn associates with water, small molecular weight ligands and proteins. Mn speciation may influence the kinetics of its movement through the BBB. In the present work, the brain influx rates of 54Mn2+, 54Mn citrate and 54Mn transferrin (54Mn Tf) were determined using the in situ brain perfusion technique. The influx rates were compared to their predicted diffusion rates, which were determined from their octanol/aqueous partitioning coefficients and molecular weights. The in situ brain perfusion fluid contained 54Mn2+, 54Mn citrate or 54Mn Tf and a vascular volume/extracellular space marker, 14C-sucrose, which did not appreciably cross the BBB during these short experiments (15-180 s). The influx transfer coefficient (Kin) was determined from four perfusion durations for each Mn species in nine brain regions and the lateral ventricular choroid plexus. The brain Kin was (5-13) x 10(-5), (3-51) x 10(-5), and (2-13) x 10(-5) ml/s/g for 54Mn2+, 54Mn citrate, and 54Mn Tf, respectively. Brain Kin values for any one of the three Mn species generally did not significantly differ among the nine brain regions and the choroid plexus. However, the brain Kin for Mn citrate was greater than Mn2+ and Mn Tf Kin values in a number of brain regions. When compared to calculated diffusion rates, brain Kin values suggest carrier-mediated brain influx of 54Mn2+, 54Mn citrate and 54Mn Tf. 55Mn citrate inhibited 54Mn citrate uptake, and 55Mn2+ inhibited 54Mn2+ uptake, supporting the conclusion of carrier-mediated brain Mn influx. The greater Kin values for Mn citrate than Mn2+ and its presence as a major non-protein-bound Mn species in blood plasma suggest Mn citrate may be a major Mn species entering the brain.


Archive | 1987

Intravenous Self-Administration: Response Rates, the Effects of Pharmacological Challenges, and Drug Preference

Robert A. Yokel

Intravenous self-administration preparations, utilizing a chronic indwelling catheter, have been developed for the rat, rhesus monkey, dog, squirrel monkey, pig, baboon, cat, and mouse. A wide variety of psychoactive drugs has been tested in these animal preparations which are considered to be reliable predictors of the abuse potential of drugs. Maintained self-administration is taken as evidence of reinforcing effect, and therefore abuse potential, and has been reported for most of the drugs that humans abuse. Use of the self-administration technique also predicts that some drugs not widely available for human use would be abused if available. Long-term drug access results in drug-intake patterns and drug-induced effects in animals that are similar to those seen in humans. The self-administration technique has been widely used to determine the neurotransmitter basis of the reinforcing effects of drugs. Drug preference and reinforcement magnitude have been estimated by comparing the self-administration of two or more drugs available under various experimental conditions, including choice procedures, progressive-ratio reinforcement schedules, and chain reinforcement schedules.


Journal of Toxicology and Environmental Health | 1996

STATUS AND FUTURE CONCERNS OF CLINICAL AND ENVIRONMENTAL ALUMINUM TOXICOLOGY

T. P. Flaten; A. C. Alfrey; J. D. Birchall; J. Savory; Robert A. Yokel

A wide range of toxic effects of aluminum (Al) have been demonstrated in plants and aquatic animals in nature, in experimental animals by several routes of exposure, and under different clinical conditions in humans. Aluminum toxicity is a major problem in agriculture, affecting perhaps as much as 40% of arable soils in the world. In fresh waters acidified by acid rain, Al toxicity has led to fish extinction. Aluminum is a very potent neurotoxicant. In humans with chronic renal failure on dialysis, Al causes encephalopathy, osteomalacia, and anemia. There are also reports of such effects in certain patient groups without renal failure. Subtle neurocognitive and psychomotor effects and electroencephalograph (EEG) abnormalities have been reported at plasma Al levels as low as 50 micrograms/L. Infants could be particularly susceptible to Al accumulation and toxicity, reduced renal function being one contributory cause. Recent reports clearly show that Al accumulation occurs in the tissues of workers with long-term occupational exposure to Al dusts or fumes, and also indicate that such exposure may cause subtle neurological effects. Increased efforts should be directed toward defining the full range of potentially harmful effects in humans. To this end, multidisciplinary collaborative research efforts are encouraged, involving scientists from many different specialties. Emphasis should be placed on increasing our understanding of the chemistry of Al in biological systems, and on determining the cellular and molecular mechanisms of Al toxicity.


Coordination Chemistry Reviews | 2002

Aluminum chelation principles and recent advances

Robert A. Yokel

Acute Al toxicity is not common. Toxicity from prolonged Al exposure has become much less common, but still occurs occasionally. The potential contribution of Al to Alzheimers disease and related disorders is not resolved. Diagnosis of Al accumulation and treatment of Al toxicity can be achieved with chelators. The biology and chemistry of Al relevant to its chelation are reviewed. The approaches that have been used to assess potential Al chelators are summarized. The chemistry of desferrioxamine and the hydroxypyridinones in relation to Al chelation and the results of the more recent studies with these agents are reviewed. There is very little clinical experience with the hydroxypyridinones as Al chelators. The results of chemical and animal studies suggest they have potential to replace desferrioxamine, as orally effective Al chelators. However, adverse effects associated with the use of 1,2-dimethyl-3,4-hydroxypyridinone (deferiprone) dampen enthusiasm for the hydroxypyridinones as Al chelators. The uses of Al chelators to enhance Al removal, concentration, detection and speciation are reviewed. The role of Al chelators in the environment and their production by plants to reduce Al toxicity is summarized.


Journal of Occupational Medicine and Toxicology | 2011

Engineered nanomaterials: exposures, hazards, and risk prevention

Robert A. Yokel; Robert C. MacPhail

Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings (academic, small and large industrial, and the general public in industrialized nations) are either developing or using engineered nanomaterials (ENMs) or ENM-containing products. However, our understanding of the occupational, health and safety aspects of ENMs is still in its formative stage. A survey of the literature indicates the available information is incomplete, many of the early findings have not been independently verified, and some may have been over-interpreted. This review describes ENMs briefly, their application, the ENM workforce, the major routes of human exposure, some examples of uptake and adverse effects, what little has been reported on occupational exposure assessment, and approaches to minimize exposure and health hazards. These latter approaches include engineering controls such as fume hoods and personal protective equipment. Results showing the effectiveness - or lack thereof - of some of these controls are also included. This review is presented in the context of the Risk Assessment/Risk Management framework, as a paradigm to systematically work through issues regarding human health hazards of ENMs. Examples are discussed of current knowledge of nanoscale materials for each component of the Risk Assessment/Risk Management framework. Given the notable lack of information, current recommendations to minimize exposure and hazards are largely based on common sense, knowledge by analogy to ultrafine material toxicity, and general health and safety recommendations. This review may serve as an overview for health and safety personnel, management, and ENM workers to establish and maintain a safe work environment. Small start-up companies and research institutions with limited personnel or expertise in nanotechnology health and safety issues may find this review particularly useful.


Journal of Toxicology and Environmental Health-part B-critical Reviews | 2006

The speciation of metals in mammals influences their toxicokinetics and toxicodynamics and therefore human health risk assessment.

Robert A. Yokel; Stephen M. Lasley; David C. Dorman

Chemical form (i.e., species) can influence metal toxicokinetics and toxicodynamics and should be considered to improve human health risk assessment. Factors that influence metal speciation (and examples) include: (1) carrier-mediated processes for specific metal species (arsenic, chromium, lead and manganese), (2) valence state (arsenic, chromium, manganese and mercury), (3) particle size (lead and manganese), (4) the nature of metal binding ligands (aluminum, arsenic, chromium, lead, and manganese), (5) whether the metal is an organic versus inorganic species (arsenic, lead, and mercury), and (6) biotransformation of metal species (aluminum, arsenic, chromium, lead, manganese and mercury). The influence of speciation on metal toxicokinetics and toxicodynamics in mammals, and therefore the adverse effects of metals, is reviewed to illustrate how the physicochemical characteristics of metals and their handling in the body (toxicokinetics) can influence toxicity (toxicodynamics). Generalizing from mercury, arsenic, lead, aluminum, chromium, and manganese, it is clear that metal speciation influences mammalian toxicity. Methods used in aquatic toxicology to predict the interaction among metal speciation, uptake, and toxicity are evaluated. A classification system is presented to show that the chemical nature of the metal can predict metal ion toxicokinetics and toxicodynamics. Essential metals, such as iron, are considered. These metals produce low oral toxicity under most exposure conditions but become toxic when biological processes that utilize or transport them are overwhelmed, or bypassed. Risk assessments for essential and nonessential metals should consider toxicokinetic and toxicodynamic factors in setting exposure standards. Because speciation can influence a metals fate and toxicity, different exposure standards should be established for different metal species. Many examples are provided which consider metal essentiality and toxicity and that illustrate how consideration of metal speciation can improve the risk assessment process. More examples are available at a website established as a repository for summaries of the literature on how the speciation of metals affects their toxicokinetics. This article is based on a workshop entitled “Metal Speciation in Toxicology: Determination and Importance for Risk Assessment” presented at the 42nd Annual Meeting of the Society of Toxicology, March, 2003, Salt Lake City, UT.


Toxicological Sciences | 2010

Brain Distribution and Toxicological Evaluation of a Systemically Delivered Engineered Nanoscale Ceria

Sarita S. Hardas; D.A. Butterfield; Rukhsana Sultana; Michael T. Tseng; Mo Dan; Rebecca L. Florence; Jason M. Unrine; Uschi M. Graham; Peng Wu; Eric A. Grulke; Robert A. Yokel

Engineered nanoscale ceria is used as a diesel fuel catalyst. Little is known about its mammalian central nervous system effects. The objective of this paper is to characterize the biodistribution of a 5-nm citrate-stabilized ceria dispersion from blood into brain and its pro- or antioxidant effects. An approximately 4% aqueous ceria dispersion was iv infused into rats (0, 100, and up to 250 mg/kg), which were terminated after 1 or 20 h. Ceria concentration, localization, and chemical speciation in the brain were assessed by inductively coupled plasma mass spectrometry, light and electron microscopy (EM), and electron energy loss spectroscopy (EELS). Pro- or antioxidative stress effects were assessed as protein carbonyls, 3-nitrotyrosine, and protein-bound 4-hydroxy-2-trans-nonenal in hippocampus, cortex, and cerebellum. Glutathione reductase, glutathione peroxidase, manganese superoxide dismutase, and catalase levels and activities were measured in hippocampus. Catalase levels and activities were also measured in cortex and cerebellum. Na fluorescein and horseradish peroxidase (HRP) were given iv as blood-brain barrier (BBB) integrity markers. Mortality was seen after administration of 175-250 mg ceria/kg. Twenty hours after infusion of 100 mg ceria/kg, brain HRP was marginally elevated. EM and EELS revealed mixed Ce(III) and Ce(IV) valence in the freshly synthesized ceria in vitro and in ceria agglomerates in the brain vascular compartment. Ceria was not seen in microvascular endothelial or brain cells. Ceria elevated catalase levels at 1 h and increased catalase activity at 20 h in hippocampus and decreased catalase activity at 1 h in cerebellum. Compared with a previously studied approximately 30-nm ceria, this ceria was more toxic, was not seen in the brain, and produced little oxidative stress effect to the hippocampus and cerebellum. The results are contrary to the hypothesis that a smaller engineered nanomaterial would more readily permeate the BBB.

Collaboration


Dive into the Robert A. Yokel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mo Dan

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Peng Wu

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge