Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert B. Hindsley is active.

Publication


Featured researches published by Robert B. Hindsley.


The Astronomical Journal | 2003

Astrometric Calibration of the Sloan Digital Sky Survey

Jeffrey R. Pier; Jeffrey A. Munn; Robert B. Hindsley; Gregory S. Hennessy; Stephen M. Kent; Robert H. Lupton; Željko Ivezić

The astrometric calibration of the Sloan Digital Sky Survey is described. For point sources brighter than r ~ 20, the astrometric accuracy is 45 mas rms per coordinate when reduced against the USNO CCD Astrograph Catalog and 75 mas rms when reduced against Tycho-2, with an additional 20–30 mas systematic error in both cases. The rms errors are dominated by anomalous refraction and random errors in the primary reference catalogs. The relative astrometric accuracy between the r filter and each of the other filters (u, g, i, z) is 25–35 mas rms. At the survey limit (r ~ 22), the astrometric accuracy is limited by photon statistics to approximately 100 mas rms for typical seeing. Anomalous refraction is shown to contain components correlated over 2° or more on the sky.


The Astrophysical Journal | 2002

The Ghost of Sagittarius and Lumps in the Halo of the Milky Way

Heidi Jo Newberg; Brian Yanny; Constance M. Rockosi; Eva K. Grebel; Hans-Walter Rix; J. Brinkmann; István Csabai; Greg Hennessy; Robert B. Hindsley; Rodrigo A. Ibata; Zeljko Ivezic; D. Q. Lamb; E. Thomas Nash; Michael Odenkirchen; Heather A. Rave; Donald P. Schneider; Andrea Stolte; Donald G. York

We identify new structures in the halo of the Milky Way from positions, colors, and magnitudes of five million stars detected in the Sloan Digital Sky Survey. Most of these stars are within 126 of the celestial equator. We present color-magnitude diagrams (CMDs) for stars in two previously discovered, tidally disrupted structures. The CMDs and turnoff colors are consistent with those of the Sagittarius dwarf galaxy, as had been predicted. In one direction, we are even able to detect a clump of red stars, similar to that of the Sagittarius dwarf, from stars spread across 110 deg2 of sky. Focusing on stars with the colors of F turnoff objects, we identify at least five additional overdensities of stars. Four of these may be pieces of the same halo structure, which would cover a region of the sky at least 40° in diameter, at a distance of 11 kpc from the Sun (18 kpc from the center of the Galaxy). The turnoff is significantly bluer than that of thick-disk stars, yet the stars lie closer to the Galactic plane than a power-law spheroid predicts. We suggest two models to explain this new structure. One possibility is that this new structure could be a new dwarf satellite of the Milky Way, hidden in the Galactic plane and in the process of being tidally disrupted. The other possibility is that it could be part of a disklike distribution of stars which is metal-poor, with a scale height of approximately 2 kpc and a scale length of approximately 10 kpc. The fifth overdensity, which is 20 kpc away, is some distance from the Sagittarius dwarf streamer orbit and is not associated with any known Galactic structure. We have tentatively identified a sixth overdensity in the halo. If this sixth structure is instead part of a smooth distribution of halo stars (the spheroid), then the spheroid must be very flattened, with axial ratio q = 0.5. It is likely that there are many smaller streams of stars in the Galactic halo.


The Astrophysical Journal | 2002

Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data

Idit Zehavi; Michael R. Blanton; Joshua A. Frieman; David H. Weinberg; Hounjun J. Mo; Michael A. Strauss; Scott F. Anderson; James Annis; Neta A. Bahcall; Mariangela Bernardi; John W. Briggs; J. Brinkmann; Scott Burles; Larry N. Carey; Francisco J. Castander; Andrew J. Connolly; István Csabai; Julianne J. Dalcanton; Scott Dodelson; Mamoru Doi; Daniel J. Eisenstein; Michael L. Evans; Douglas P. Finkbeiner; Scott D. Friedman; Masataka Fukugita; James E. Gunn; Greg Hennessy; Robert B. Hindsley; Željko Ivezić; Stephen B. H. Kent

We present the first measurements of clustering in the Sloan Digital Sky Survey (SDSS) galaxy redshift survey. Our sample consists of 29,300 galaxies with redshifts 5700 km s-1 ≤ cz ≤ 39,000 km s-1, distributed in several long but narrow (25-5°) segments, covering 690 deg2. For the full, flux-limited sample, the redshift-space correlation length is approximately 8 h-1 Mpc. The two-dimensional correlation function ξ(rp,π) shows clear signatures of both the small-scale, fingers-of-God distortion caused by velocity dispersions in collapsed objects and the large-scale compression caused by coherent flows, though the latter cannot be measured with high precision in the present sample. The inferred real-space correlation function is well described by a power law, ξ(r) = (r/6.1 ± 0.2 h-1 Mpc)-1.75±0.03, for 0.1 h-1 Mpc ≤ r ≤ 16 h-1 Mpc. The galaxy pairwise velocity dispersion is σ12 ≈ 600 ± 100 km s-1 for projected separations 0.15 h-1 Mpc ≤ rp ≤ 5 h-1 Mpc. When we divide the sample by color, the red galaxies exhibit a stronger and steeper real-space correlation function and a higher pairwise velocity dispersion than do the blue galaxies. The relative behavior of subsamples defined by high/low profile concentration or high/low surface brightness is qualitatively similar to that of the red/blue subsamples. Our most striking result is a clear measurement of scale-independent luminosity bias at r 10 h-1 Mpc: subsamples with absolute magnitude ranges centered on M* - 1.5, M*, and M* + 1.5 have real-space correlation functions that are parallel power laws of slope ≈-1.8 with correlation lengths of approximately 7.4, 6.3, and 4.7 h-1 Mpc, respectively.


The Astronomical Journal | 2001

The Luminosity Function of Galaxies in SDSS Commissioning Data

Michael R. Blanton; Julianne J. Dalcanton; Daniel J. Eisenstein; Jon Loveday; Michael A. Strauss; Mark SubbaRao; David H. Weinberg; John Anderson; James Annis; Neta A. Bahcall; Mariangela Bernardi; J. Brinkmann; Robert J. Brunner; Scott Burles; Larry N. Carey; Francisco J. Castander; Andrew J. Connolly; István Csabai; Mamoru Doi; Douglas P. Finkbeiner; Scott D. Friedman; Joshua A. Frieman; Masataka Fukugita; James E. Gunn; Gregory S. Hennessy; Robert B. Hindsley; David W. Hogg; Takashi Ichikawa; Željko Ivezić; Stephen M. Kent

In the course of its commissioning observations, the Sloan Digital Sky Survey (SDSS) has produced one of the largest redshift samples of galaxies selected from CCD images. Using 11,275 galaxies complete to r* \ 17.6 over 140 deg2, we compute the luminosity function of galaxies in the r* band over a range (for h \ 1). The result is well-described by a Schechter function with parameters [23 \ M rp \ [16 h3 Mpc~3,


The Astronomical Journal | 2001

Solar System Objects Observed in the Sloan Digital Sky Survey Commissioning Data

Željko Ivezić; Serge Tabachnik; Roman R. Rafikov; Robert H. Lupton; Thomas P. Quinn; Mark Hammergren; Laurent Eyer; Jennifer Chu; John C. Armstrong; Xiaohui Fan; Kristian Finlator; T. R. Geballe; James E. Gunn; Gregory S. Hennessy; Gillian R. Knapp; S. K. Leggett; Jeffrey A. Munn; Jeffrey R. Pier; Constance M. Rockosi; Donald P. Schneider; Michael A. Strauss; Brian Yanny; Jonathan Brinkmann; István Csabai; Robert B. Hindsley; Stephen M. Kent; D. Q. Lamb; Bruce Margon; Timothy A. McKay; Patrick Waddel

We discuss measurements of the properties of D13,000 asteroids detected in 500 deg2 of sky in the Sloan Digital Sky Survey (SDSS) commissioning data. The moving objects are detected in the magnitude range 14 \ r* \ 21.5, with a baseline of D5 minutes, resulting in typical velocity errors of D3%. Extensive tests show that the sample is at least 98% complete, with a contamination rate of less than 3%. We —nd that the size distribution of asteroids resembles a broken power law, independent of the heliocentric distance: D~2.3 for 0.4 km, and D~4 for 5


The Astrophysical Journal | 2002

Analysis of systematic effects and statistical uncertainties in angular clustering of galaxies from early sloan digital sky survey data

Ryan Scranton; David E. Johnston; Scott Dodelson; Joshua A. Frieman; A. J. Connolly; Daniel J. Eisenstein; James E. Gunn; Lam Hui; Bhuvnesh Jain; Stephen B. H. Kent; Jon Loveday; Vijay K. Narayanan; Robert C. Nichol; Liam O'Connell; Roman Scoccimarro; Ravi K. Sheth; Albert Stebbins; Michael A. Strauss; Alexander S. Szalay; István Szapudi; Max Tegmark; Michael S. Vogeley; Idit Zehavi; James Annis; Neta A. Bahcall; J. Brinkman; István Csabai; Robert B. Hindsley; Zeljko Ivezic; Rita S. J. Kim

The angular distribution of galaxies encodes a wealth of information about large-scale structure. Ultimately, the Sloan Digital Sky Survey (SDSS) will record the angular positions of order of 108 galaxies in five bands, adding significantly to the cosmological constraints. This is the first in a series of papers analyzing a rectangular stripe of 25 × 90° from early SDSS data. We present the angular correlation function for galaxies in four separate magnitude bins on angular scales ranging from 0003 to 15°. Much of the focus of this paper is on potential systematic effects. We show that the final galaxy catalog—with the mask accounting for regions of poor seeing, reddening, bright stars, etc.—is free from external and internal systematic effects for galaxies brighter than r* = 22. Our estimator of the angular correlation function includes the effects of the integral constraint and the mask. The full covariance matrix of errors in these estimates is derived using mock catalogs with further estimates using a number of other methods.


The Astronomical Journal | 2004

An Improved Proper-Motion Catalog Combining USNO-B and the Sloan Digital Sky Survey

Jeffrey A. Munn; David G. Monet; Stephen E. Levine; Blaise Canzian; Jeffrey R. Pier; Hugh C. Harris; Robert H. Lupton; Željko Ivezić; Robert B. Hindsley; Gregory S. Hennessy; Donald P. Schneider; J. Brinkmann

An improved proper-motion catalog is presented, combining the USNO-B and Sloan Digital Sky Survey (SDSS) catalogs in the area of sky covered by SDSS Data Release 1 (DR1; 2099 deg2). USNO-B positions are recalibrated using SDSS galaxies, and proper motions are recomputed including both the USNO-B and SDSS positions. Statistical errors in the USNO-B proper motions are decreased by roughly 20%?30%, systematic errors are greatly reduced, and the proper motions are placed on an absolute reference frame. Requiring a match to an SDSS object removes the large number of false high proper motion objects in USNO-B. The resultant catalog is 90% complete to g < 19.7, with statistical errors in the component proper motions of roughly 3?3.5 mas yr-1, substantially smaller systematic errors, and a contamination rate of less than 0.5%. A number of studies are currently underway using proper motions from this catalog. The catalog is available via ftp.


The Astronomical Journal | 2000

Candidate RR Lyrae stars found in Sloan Digital Sky Survey commissioning data

Željko Ivezić; Josh Goldston; Kristian Finlator; Gillian R. Knapp; Brian Yanny; Timothy A. McKay; Susan Amrose; Kevin Krisciunas; Beth Willman; Scott F. Anderson; Chris Schaber; Dawn K. Erb; Chelsea Logan; Christopher W. Stubbs; Bing Chen; Eric H. Neilsen; Alan Uomoto; Jeffrey R. Pier; Xiaohui Fan; James E. Gunn; Robert H. Lupton; Constance M. Rockosi; David J. Schlegel; Michael A. Strauss; James Annis; J. Brinkmann; István Csabai; Mamoru Doi; Masataka Fukugita; Gregory S. Hennessy

We present a sample of 148 candidate RR Lyrae stars selected from Sloan Digital Sky Survey (SDSS) commissioning data for about 100 deg2 of sky surveyed twice with ?t = 1.9946 days. Although the faint-magnitude limit of the SDSS allows us to detect RR Lyrae stars to large Galactocentric distances (~100 kpc, or r* ~ 21), we find no candidates fainter than r* ~ 20, i.e., farther than ~65 kpc from the Galactic center. On the assumption that all 148 candidates are indeed RR Lyrae stars (contamination by other species of variable star is probably less than 10%), we find that their volume density has roughly a power-law dependence on Galactocentric radius, R-2.7?0.2, between 10 and 50 kpc and drops abruptly at R ~ 50?60 kpc, possibly indicating a sharp edge to the stellar halo as traced by RR Lyrae stars. The Galactic distribution of stars in this sample is very inhomogeneous and shows a clump of over 70 stars at about 45 kpc from the Galactic center. This clump is also detected in the distribution of nonvariable objects with RR Lyrae star colors. When sources in the clump are excluded, the best power-law fit becomes consistent with the R-3 distribution found from surveys of bright RR Lyrae stars. These results imply that the halo contains clumpy overdensities inhomogeneously distributed within a smooth R-3 background, with a possible cutoff at ~50 kpc.


The Astrophysical Journal | 1999

The Discovery of a Field Methane Dwarf from Sloan Digital Sky Survey Commissioning Data

Michael A. Strauss; Xiaohui Fan; James E. Gunn; S. K. Leggett; T. R. Geballe; Jeffrey R. Pier; Robert H. Lupton; Gillian R. Knapp; James Annis; J. Brinkmann; James H. Crocker; István Csabai; Masataka Fukugita; David A. Golimowski; Frederick H. Harris; Gregory S. Hennessy; Robert B. Hindsley; Željko Ivezić; Stephen M. Kent; D. Q. Lamb; Jeffrey A. Munn; Heidi Jo Newberg; Ron Rechenmacher; Donald P. Schneider; Chris Stoughton; Douglas L. Tucker; Patrick Waddell; Donald G. York

We report the discovery of the coolest field dwarf yet known, selected as an unresolved object with extremely red colors from commissioning imaging data of the Sloan Digital Sky Survey. Its spectrum from 0.8 to 2.5 μm is dominated by strong bands of H2O and CH4. Its spectrum and colors over this range are very similar to those of Gl 229B, the only other known example of a methane dwarf. It is roughly 1.2 mag fainter than Gl 229B, suggesting that it lies at a distance of ~10 pc. Such a cool object must have a mass well below the hydrogen-burning limit of 0.08 M☉ and therefore is a genuine brown dwarf, with a probable mass in the range 0.015-0.06 M☉ for an age range of 0.3-5 Gyr.


The Astronomical Journal | 2001

Colors of 2625 Quasars at 0 < z < 5 Measured in the Sloan Digital Sky Survey Photometric System*

Gordon T. Richards; Xiaohui Fan; Donald P. Schneider; Daniel E. Vanden Berk; Michael A. Strauss; Donald G. York; John Anderson; Scott F. Anderson; James Annis; Neta A. Bahcall; Mariangela Bernardi; John W. Briggs; J. Brinkmann; Robert J. Brunner; Scott Burles; Larry N. Carey; Francisco J. Castander; A. J. Connolly; James H. Crocker; István Csabai; Mamoru Doi; Douglas P. Finkbeiner; Scott D. Friedman; Joshua A. Frieman; Masataka Fukugita; James E. Gunn; Robert B. Hindsley; Željko Ivezić; Stephen M. Kent; Gillian R. Knapp

We present an empirical investigation of the colors of quasars in the Sloan Digital Sky Survey (SDSS) photometric system. The sample studied includes 2625 quasars with SDSS photometry: 1759 quasars found during SDSS spectroscopic commissioning and SDSS follow-up observations on other telescopes, 50 matches to FIRST quasars, 573 matches to quasars from the NASA Extragalactic Database, and 243 quasars from two or more of these sources. The quasars are distributed in a 25 wide stripe centered on the celestial equator covering ~529 deg2. Positions (accurate to 02) and SDSS magnitudes are given for the 898 quasars known prior to SDSS spectroscopic commissioning. New SDSS quasars, which range in brightness from i* = 15.39 to the photometric magnitude limit of the survey, represent an increase of over 200% in the number of known quasars in this area of the sky. The ensemble average of the observed colors of quasars in the SDSS passbands are well represented by a power-law continuum with αν = -0.5 (fν ∝ να) and are close to those predicted by previous simulations. However, the contributions of the small blue (or λ3000) bump and other strong emission lines have a significant effect upon the colors. The color-redshift relation exhibits considerable structure, which may be of use in determining photometric redshifts for quasars from their colors alone. The range of colors at a given redshift can generally be accounted for by a range in the optical spectral index with a distribution αν = -0.5 ± 0.65 (95% confidence), but there is a red tail in the distribution. This tail may be a sign of internal reddening, especially since fainter objects at a given redshift tend to exhibit redder colors than the average. Finally, we show that there is a continuum of properties between quasars and Seyfert galaxies, and we test the validity of the traditional dividing line (MB = -23) between the two classes of active galactic nuclei.

Collaboration


Dive into the Robert B. Hindsley's collaboration.

Top Co-Authors

Avatar

István Csabai

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory S. Hennessy

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Thomas Armstrong

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald P. Schneider

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Henrique R. Schmitt

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge