Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert B. Russell is active.

Publication


Featured researches published by Robert B. Russell.


Nature | 2006

Proteome survey reveals modularity of the yeast cell machinery

Anne-Claude Gavin; Patrick Aloy; Paola Grandi; Roland Krause; Markus Boesche; Martina Marzioch; Christina Rau; Lars Juhl Jensen; Sonja Bastuck; Birgit Dümpelfeld; Angela Edelmann; Marie-Anne Heurtier; Verena Hoffman; Christian Hoefert; Karin Klein; Manuela Hudak; Anne-Marie Michon; Malgorzata Schelder; Markus Schirle; Marita Remor; Tatjana Rudi; Sean D. Hooper; Andreas Bauer; Tewis Bouwmeester; Georg Casari; Gerard Drewes; Gitte Neubauer; Jens Rick; Bernhard Kuster; Peer Bork

Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. Here we report the first genome-wide screen for complexes in an organism, budding yeast, using affinity purification and mass spectrometry. Through systematic tagging of open reading frames (ORFs), the majority of complexes were purified several times, suggesting screen saturation. The richness of the data set enabled a de novo characterization of the composition and organization of the cellular machinery. The ensemble of cellular proteins partitions into 491 complexes, of which 257 are novel, that differentially combine with additional attachment proteins or protein modules to enable a diversification of potential functions. Support for this modular organization of the proteome comes from integration with available data on expression, localization, function, evolutionary conservation, protein structure and binary interactions. This study provides the largest collection of physically determined eukaryotic cellular machines so far and a platform for biological data integration and modelling.


PLOS Biology | 2005

Principles of MicroRNA–Target Recognition

Julius Brennecke; Alexander Stark; Robert B. Russell; Stephen M. Cohen

MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression in plants and animals. Although their biological importance has become clear, how they recognize and regulate target genes remains less well understood. Here, we systematically evaluate the minimal requirements for functional miRNA–target duplexes in vivo and distinguish classes of target sites with different functional properties. Target sites can be grouped into two broad categories. 5′ dominant sites have sufficient complementarity to the miRNA 5′ end to function with little or no support from pairing to the miRNA 3′ end. Indeed, sites with 3′ pairing below the random noise level are functional given a strong 5′ end. In contrast, 3′ compensatory sites have insufficient 5′ pairing and require strong 3′ pairing for function. We present examples and genome-wide statistical support to show that both classes of sites are used in biologically relevant genes. We provide evidence that an average miRNA has approximately 100 target sites, indicating that miRNAs regulate a large fraction of protein-coding genes and that miRNA 3′ ends are key determinants of target specificity within miRNA families.


Cell | 2003

bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila

Julius Brennecke; David R. Hipfner; Alexander Stark; Robert B. Russell; Stephen M. Cohen

Cell proliferation, cell death, and pattern formation are coordinated in animal development. Although many proteins that control cell proliferation and apoptosis have been identified, the means by which these effectors are linked to the patterning machinery remain poorly understood. Here, we report that the bantam gene of Drosophila encodes a 21 nucleotide microRNA that promotes tissue growth. bantam expression is temporally and spatially regulated in response to patterning cues. bantam microRNA simultaneously stimulates cell proliferation and prevents apoptosis. We identify the pro-apoptotic gene hid as a target for regulation by bantam miRNA, providing an explanation for bantams anti-apoptotic activity.


Nucleic Acids Research | 2003

GlobPlot: exploring protein sequences for globularity and disorder

Rune Linding; Robert B. Russell; Victor Neduva; Toby J. Gibson

A major challenge in the proteomics and structural genomics era is to predict protein structure and function, including identification of those proteins that are partially or wholly unstructured. Non-globular sequence segments often contain short linear peptide motifs (e.g. SH3-binding sites) which are important for protein function. We present here a new tool for discovery of such unstructured, or disordered regions within proteins. GlobPlot (http://globplot.embl.de) is a web service that allows the user to plot the tendency within the query protein for order/globularity and disorder. We show examples with known proteins where it successfully identifies inter-domain segments containing linear motifs, and also apparently ordered regions that do not contain any recognised domain. GlobPlot may be useful in domain hunting efforts. The plots indicate that instances of known domains may often contain additional N- or C-terminal segments that appear ordered. Thus GlobPlot may be of use in the design of constructs corresponding to globular proteins, as needed for many biochemical studies, particularly structural biology. GlobPlot has a pipeline interface--GlobPipe--for the advanced user to do whole proteome analysis. GlobPlot can also be used as a generic infrastructure package for graphical displaying of any possible propensity.


PLOS Biology | 2003

Identification of Drosophila MicroRNA targets.

Alexander Stark; Julius Brennecke; Robert B. Russell; Stephen M. Cohen

MicroRNAs (miRNAs) are short RNA molecules that regulate gene expression by binding to target messenger RNAs and by controlling protein production or causing RNA cleavage. To date, functions have been assigned to only a few of the hundreds of identified miRNAs, in part because of the difficulty in identifying their targets. The short length of miRNAs and the fact that their complementarity to target sequences is imperfect mean that target identification in animal genomes is not possible by standard sequence comparison methods. Here we screen conserved 3′ UTR sequences from the Drosophila melanogaster genome for potential miRNA targets. The screening procedure combines a sequence search with an evaluation of the predicted miRNA–target heteroduplex structures and energies. We show that this approach successfully identifies the five previously validated let-7, lin-4, and bantam targets from a large database and predict new targets for Drosophila miRNAs. Our target predictions reveal striking clusters of functionally related targets among the top predictions for specific miRNAs. These include Notch target genes for miR-7, proapoptotic genes for the miR-2 family, and enzymes from a metabolic pathway for miR-277. We experimentally verified three predicted targets each for miR-7 and the miR-2 family, doubling the number of validated targets for animal miRNAs. Statistical analysis indicates that the best single predicted target sites are at the border of significance; thus, target predictions should be considered as tentative until experimentally validated. We identify features shared by all validated targets that can be used to evaluate target predictions for animal miRNAs. Our initial evaluation and experimental validation of target predictions suggest functions for two miRNAs. For others, the screen suggests plausible functions, such as a role for miR-277 as a metabolic switch controlling amino acid catabolism. Cross-genome comparison proved essential, as it allows reduction of the sequence search space. Improvements in genome annotation and increased availability of cDNA sequences from other genomes will allow more sensitive screens. An increase in the number of confirmed targets is expected to reveal general structural features that can be used to improve their detection. While the screen is likely to miss some targets, our study shows that valid targets can be identified from sequence alone.


Cell | 2007

Systematic discovery of in vivo phosphorylation networks

Rune Linding; Lars Juhl Jensen; Gerard J. Ostheimer; Marcel A. T. M. van Vugt; Claus Jørgensen; Ioana Miron; Francesca Diella; Karen Colwill; Lorne Taylor; Kelly Elder; Pavel Metalnikov; Vivian Nguyen; Adrian Pasculescu; Jing Jin; Jin Gyoon Park; Leona D. Samson; James R. Woodgett; Robert B. Russell; Peer Bork; Michael B. Yaffe; Tony Pawson

Protein kinases control cellular decision processes by phosphorylating specific substrates. Thousands of in vivo phosphorylation sites have been identified, mostly by proteome-wide mapping. However, systematically matching these sites to specific kinases is presently infeasible, due to limited specificity of consensus motifs, and the influence of contextual factors, such as protein scaffolds, localization, and expression, on cellular substrate specificity. We have developed an approach (NetworKIN) that augments motif-based predictions with the network context of kinases and phosphoproteins. The latter provides 60%-80% of the computational capability to assign in vivo substrate specificity. NetworKIN pinpoints kinases responsible for specific phosphorylations and yields a 2.5-fold improvement in the accuracy with which phosphorylation networks can be constructed. Applying this approach to DNA damage signaling, we show that 53BP1 and Rad50 are phosphorylated by CDK1 and ATM, respectively. We describe a scalable strategy to evaluate predictions, which suggests that BCLAF1 is a GSK-3 substrate.


Nature | 2012

Dissecting the genomic complexity underlying medulloblastoma

David T. W. Jones; Natalie Jäger; Marcel Kool; Thomas Zichner; Barbara Hutter; Marc Sultan; Yoon-Jae Cho; Trevor J. Pugh; Volker Hovestadt; Adrian M. Stütz; Tobias Rausch; Hans-Jörg Warnatz; Marina Ryzhova; Sebastian Bender; Dominik Sturm; Sabrina Pleier; Huriye Cin; Elke Pfaff; Laura Sieber; Andrea Wittmann; Marc Remke; Hendrik Witt; Sonja Hutter; Theophilos Tzaridis; Joachim Weischenfeldt; Benjamin Raeder; Meryem Avci; Vyacheslav Amstislavskiy; Marc Zapatka; Ursula Weber

Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour–normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.


Science | 2009

Proteome Organization in a Genome-Reduced Bacterium

Sebastian Kuehner; Vera van Noort; Matthew J. Betts; Alejandra Leo-Macias; Claire Batisse; Michaela Rode; Takuji Yamada; Tobias Maier; Samuel L. Bader; Pedro Beltran-Alvarez; Daniel Castaño-Díez; Wei-Hua Chen; Damien P. Devos; Marc Gueell; Tomás Norambuena; Ines Racke; Vladimir Rybin; Alexander Schmidt; Eva Yus; Ruedi Aebersold; Richard Herrmann; Bettina Boettcher; Achilleas S. Frangakis; Robert B. Russell; Luis Serrano; Peer Bork; Anne-Claude Gavin

Simply Mycoplasma The bacterium Mycoplasma pneumoniae, a human pathogen, has a genome of reduced size and is one of the simplest organisms that can reproduce outside of host cells. As such, it represents an excellent model organism in which to attempt a systems-level understanding of its biological organization. Now three papers provide a comprehensive and quantitative analysis of the proteome, the metabolic network, and the transcriptome of M. pneumoniae (see the Perspective by Ochman and Raghavan). Anticipating what might be possible in the future for more complex organisms, Kühner et al. (p. 1235) combine analysis of protein interactions by mass spectrometry with extensive structural information on M. pneumoniae proteins to reveal how proteins work together as molecular machines and map their organization within the cell by electron tomography. The manageable genome size of M. pneumoniae allowed Yus et al. (p. 1263) to map the metabolic network of the organism manually and validate it experimentally. Analysis of the network aided development of a minimal medium in which the bacterium could be cultured. Finally, G‡ell et al. (p. 1268) applied state-of-the-art sequencing techniques to reveal that this “simple” organism makes extensive use of noncoding RNAs and has exon- and intron-like structure within transcriptional operons that allows complex gene regulation resembling that of eukaryotes. The simplified proteome of a bacterium provides insight into the organization of proteins into molecular machines. The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification–mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.


Trends in Biochemical Sciences | 2010

WD40 proteins propel cellular networks

Christian U. Stirnimann; Evangelia Petsalaki; Robert B. Russell; Christoph W. Müller

Recent findings indicate that WD40 domains play central roles in biological processes by acting as hubs in cellular networks; however, they have been studied less intensely than other common domains, such as the kinase, PDZ or SH3 domains. As suggested by various interactome studies, they are among the most promiscuous interactors. Structural studies suggest that this property stems from their ability, as scaffolds, to interact with diverse proteins, peptides or nucleic acids using multiple surfaces or modes of interaction. A general scaffolding role is supported by the fact that no WD40 domain has been found with intrinsic enzymatic activity despite often being part of large molecular machines. We discuss the WD40 domain distributions in protein networks and structures of WD40-containing assemblies to demonstrate their versatility in mediating critical cellular functions.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Interrogating protein interaction networks through structural biology

Patrick Aloy; Robert B. Russell

Protein–protein interactions are central to most biological processes. Although much recent effort has been put into methods to identify interacting partners, there has been a limited focus on how these interactions compare with those known from three-dimensional (3D) structures. Because comparison of protein interactions often involves considering homologous, but not identical, proteins, a key issue is whether proteins that are homologous to an interacting pair will interact in the same way, or interact at all. Accordingly, we describe a method to test putative interactions on complexes of known 3D structure. Given a 3D complex and alignments of homologues of the interacting proteins, we assess the fit of any possible interacting pair on the complex by using empirical potentials. For studies of interacting protein families that show different specificities, the method provides a ranking of interacting pairs useful for prioritizing experiments. We evaluate the method on interacting families of proteins with multiple complex structures. We then consider the fibroblast growth factor/receptor system and explore the intersection between complexes of known structure and interactions proposed between yeast proteins by methods such as two-hybrids. We provide confirmation for several interactions, in addition to suggesting molecular details of how they occur.

Collaboration


Dive into the Robert B. Russell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Aloy

Barcelona Supercomputing Center

View shared research outputs
Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Alexander Stark

Research Institute of Molecular Pathology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Claude Gavin

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard R. Copley

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Matthias Schlesner

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge