Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Burman is active.

Publication


Featured researches published by Robert Burman.


Journal of Antimicrobial Chemotherapy | 2010

The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria

Maria Pränting; Camilla Lööv; Robert Burman; Ulf Göransson; Dan I. Andersson

OBJECTIVES To determine the antibacterial activity of small cyclic plant proteins, i.e. cyclotides, and the importance of the surface exposed charged residues for activity. METHODS Prototypic cyclotides, including the Möbius kalata B1 and the bracelet cycloviolacin O2 (cyO2), were isolated using reversed-phase HPLC. Initial activity screenings were conducted using radial diffusion assays (RDAs) and MIC assays with Salmonella enterica serovar Typhimurium LT2, Escherichia coli and Staphylococcus aureus as test strains. For the most active peptide, cyO2, time-kill kinetics was determined in sodium phosphate buffer (containing 0.03% trypticase soy broth) against several Gram-negative and Gram-positive bacterial species. Charged residues in cyO2 were chemically modified and activity was determined in time-kill assays. RESULTS CyO2 was the most active cyclotide and efficiently inhibited the growth of S. enterica serovar Typhimurium LT2 and E. coli in RDAs and MIC assays, while the other peptides were less active. In time-kill assays, cyO2 also had bactericidal activity against the Gram-negative species Klebsiella pneumoniae and Pseudomonas aeruginosa. In contrast, none of the cyclotides had high activity against S. aureus. Chemical masking of the charged Glu and Lys residues in cyO2 caused a near total loss of activity against Salmonella, while masking Arg caused a less pronounced activity reduction. CONCLUSIONS CyO2 is a cyclotide with potent activity against Gram-negative bacteria. The charged residues in cyO2 are all required for optimum antibacterial activity. In combination with its previously demonstrated cytotoxic activity against cancer cells and the general stability of cyclotides, cyO2 provides a promising scaffold for future drug design.


Phytochemistry | 2008

The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity

Anders Herrmann; Robert Burman; Joshua S. Mylne; Gustav Karlsson; Joachim Gullbo; David J. Craik; Richard J. Clark; Ulf Göransson

The cyclotides are currently the largest known family of head-to-tail cyclic proteins. The complex structure of these small plant proteins, which consist of approximately 30 amino acid residues, contains both a circular peptide backbone and a cystine knot, the combination of which produces the cyclic cystine knot motif. To date, cyclotides have been found in plants from the Rubiaceae, Violaceace and Cucurbitaceae families, and are believed to be part of the host defence system. In addition to their insecticidal effect, cyclotides have also been shown to be cytotoxic, anti-HIV, antimicrobial and haemolytic agents. In this study, we show that the alpine violet Viola biflora (Violaceae) is a rich source of cyclotides. The sequences of 11 cyclotides, vibi A-K, were determined by isolation and MS/MS sequencing of proteins and screening of a cDNA library of V. biflora in parallel. For the cDNA screening, a degenerate primer against a conserved (AAFALPA) motif in the cyclotide precursor ER signal sequence yielded a series of predicted cyclotide sequences that were correlated to those of the isolated proteins. There was an apparent discrepancy between the results of the two strategies as only one of the isolated proteins could be identified as a cDNA clone. Finally, to correlate amino acid sequence to cytotoxic potency, vibi D, E, G and H were analysed using a fluorometric microculture cytotoxicity assay using a lymphoma cell line. The IC(50)-values of the bracelet cyclotides vibi E, G and H ranged between 0.96 and 5.0 microM while the Möbius cyclotide vibi D was not cytotoxic at 30 microM.


Biochimica et Biophysica Acta | 2011

Cyclotide-membrane interactions: defining factors of membrane binding, depletion and disruption.

Robert Burman; Martin Malmsten; Ulf Göransson

The cyclotide family of plant-derived peptides is defined by a cyclic backbone and three disulfide bonds locked into a cyclic cystine knot. They display a diverse range of biological activities, many of which have been linked to an ability to target biological membranes. In the current work, we show that membrane binding and disrupting properties of prototypic cyclotides are dependent on lipid composition, using neutral (zwitterionic) membranes with or without cholesterol and/or anionic lipids. Cycloviolacin O2 (cyO2) caused potent membrane disruption, and showed selectivity towards anionic membranes, whereas kalata B1 and kalata B2 cyclotides were significantly less lytic towards all tested model membranes. To investigate the role of the charged amino acids of cyO2 in the membrane selectivity, these were neutralized using chemical modifications. In contrast to previous studies on the cytotoxic and antimicrobial effects of these derivatives, the Glu6 methyl ester of cyO2 was more potent than the native peptide. However, using membranes of Escherichia coli lipids gave the opposite result: the activity of the native peptide increased 50-fold. By using a combination of ellipsometry and LC-MS, we demonstrated that this unusual membrane specificity is due to native cyO2 extracting preferentially phosphatidylethanolamine-lipids from the membrane, i.e., PE-C16:0/cyC17:0 and PE-C16:0/C18:1.


Journal of Ethnopharmacology | 2013

The traditional medical uses and cytotoxic activities of sixty-one Egyptian plants: Discovery of an active cardiac glycoside from Urginea maritima

Hesham R. El-Seedi; Robert Burman; Ahmed Mansour; Zaki Turki; Loutfy Boulos; Joachim Gullbo; Ulf Göransson

ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants from the Sinai desert are widely used in traditional Bedouin medicine to treat a range of conditions including, cancers, and may thus be useful sources of novel anti-tumor compounds. Information on plants used in this way was obtained through collaboration with Bedouin herbalists. AIM OF THE STUDY To document the traditional uses of 61 species from 29 families of Egyptian medicinal plants and to investigate their biological activity using a cytotoxicity assay. MATERIAL AND METHODS MeOH extracts of the 61 plant species investigated were dissolved in 10% DMSO and their cytotoxic activity was evaluated. The extracts were tested in duplicate on three separate occasions at three different concentrations (1, 10 and 100μg/ml) against human lymphoma U-937 GTB. The most active extract was subjected to bioassay-guided fractionation using HPLC and LC/ESI-MS to isolate and identify its active components. RESULTS AND DISCUSSION The most potent extracts were those from Asclepias sinaica, Urginea maritima, Nerium oleander and Catharanthus roseus, followed by those from Cichorium endivia, Pulicaria undulate and Melia azedarach. Literature reports indicate that several of these plants produce cardiac glycosides. Bioassay-guided fractionation of alcoholic U. maritima extracts led to the isolation of a bioactive bufadienolide that was subsequently shown to be proscillaridin A, as determined by 1D and 2D NMR spectroscopy. This result demonstrates the value of plants used in traditional medicine as sources of medicinally interesting cytotoxic compounds.


Journal of Natural Products | 2010

Isolation, characterization, and bioactivity of cyclotides from the Micronesian plant Psychotria leptothyrsa.

Samantha L. Gerlach; Robert Burman; Lars Bohlin; Debasis Mondal; Ulf Göransson

Cyclotides, the largest known family of head-to-tail cyclic peptides, have approximately 30 amino acid residues with a complex structure containing a circular peptide backbone and a cystine knot. They are found in plants from the Violaceae and Rubiaceae families and are speculated to function in plant protection. In addition to their insecticidal properties, cyclotides display cytotoxic, anti-HIV, antimicrobial, and inhibition of neurotensin binding activities. Although cyclotides are present in all violaceous species hitherto screened, their distribution and expression in Rubiaceae are not fully understood. In this study, we show that Psychotria leptothyrsa var. longicarpa (Rubiaceae) contains a suite of different cyclotides. The cyclotide fractions were isolated by RP-HPLC, and sequences of six new peptides, named psyles A-F, were determined by MS/MS sequencing. One of these, psyle C, is the first rubiaceous linear variant known. Psyles A, C, and E were analyzed in a fluorometric microculture assay to determine cytotoxicity toward the human lymphoma cell line U937-GTB. The IC(50) values of psyles A, C, and E were 26, 3.50, and 0.76 muM, respectively. This study expands the number of known rubiaceous cyclotides and shows that the linear cyclotide maintains cytotoxicity.


ChemBioChem | 2009

The conserved glu in the cyclotide cycloviolacin O2 has a key structural role.

Ulf Göransson; Anders Herrmann; Robert Burman; Linda M. Haugaard-Jönsson

Cyclotides are a large family of plant peptides that are characterised by a head‐to‐tail circular backbone and three disulfide bonds that are arranged in a cystine knot. This unique structural feature, which is referred to as a cyclic cystine knot, gives the cyclotides remarkable stability against chemical and biological degradation. In addition to their natural function as insecticides for plant defence, the cyclotides have a range of bioactivities with pharmaceutical relevance, including cytotoxicity against cancer cell lines. A glutamic acid residue, aside from the invariable disulfide array, is the most conserved feature throughout the cyclotide family, and it has recently been shown to be crucial for biological activity. Here we have used solution‐state NMR spectroscopy to determine the three‐dimensional structures of the potent cytotoxic cyclotide cycloviolacin O2, and an inactive analogue in which this conserved glutamic acid has been methylated. The structures of the peptides show that the glutamic acid has a key structural role in coordinating a set of hydrogen bonds in native cycloviolacin O2; this interaction is disrupted in the methylated analogue. The proposed mechanism of action of cyclotides is membrane disruption and these results suggest that the glutamic acid is linked to cyclotide function by stabilising the structure to allow efficient aggregation in membranes, rather than in a direct interaction with a target receptor.


Journal of Biological Chemistry | 2012

Circular Proteins from Plants and Fungi

Ulf Göransson; Robert Burman; Sunithi Gunasekera

Circular proteins, defined as head-to-tail cyclized polypeptides originating from ribosomal synthesis, represent a novel class of natural products attracting increasing interest. From a scientific point of view, these compounds raise questions of where and why they occur in nature and how they are formed. From a rational point of view, these proteins and their structural concept may be exploited for crop protection and novel pharmaceuticals. Here, we review the current knowledge of three protein families: cyclotides and circular sunflower trypsin inhibitors from the kingdom of plants and the Amanita toxins from fungi. A particular emphasis is placed on their biological origin, structure, and activity. In addition, the opportunity for discovery of novel circular proteins and recent insights into their mechanism of action are discussed.


Phytochemistry | 2010

Cyclotide proteins and precursors from the genus Gloeospermum: Filling a blank spot in the cyclotide map of Violaceae

Robert Burman; Christian W. Gruber; Kristina Rizzardi; Anders Herrmann; David J. Craik; Mahabir P. Gupta; Ulf Göransson

Cyclotides are disulfide-rich plant proteins that are exceptional in their cyclic structure; their N and C termini are joined by a peptide bond, forming a continuous circular backbone, which is reinforced by three interlocked disulfide bonds. Cyclotides have been found mainly in the coffee (Rubiaceae) and violet (Violaceae) plant families. Within the Violaceae, cyclotides seem to be widely distributed, but the cyclotide complements of the vast majority of Violaceae species have not yet been explored. This study provides insight into cyclotide occurrence, diversity and biosynthesis in the Violaceae, by identifying mature cyclotide proteins, their precursors and enzymes putatively involved in their biosynthesis in the tribe Rinoreeae and the genus Gloeospermum. Twelve cyclotides from two Panamanian species, Gloeospermum pauciflorum Hekking and Gloeospermum blakeanum (Standl.) Hekking (designated Glopa A-E and Globa A-G, respectively) were characterised through cDNA screening and protein isolation. Screening of cDNA for the oxidative folding enzymes protein-disulfide isomerase (PDI) and thioredoxin (TRX) resulted in positive hits in both species. These enzymes have demonstrated roles in oxidative folding of cyclotides in Rubiaceae, and results presented here indicate that Violaceae plants have evolved similar mechanisms of cyclotide biosynthesis. We also describe PDI and TRX sequences from a third cyclotide-expressing Violaceae species, Viola biflora L., which further support this hypothesis.


Biopolymers | 2010

Evaluation of toxicity and antitumor activity of cycloviolacin O2 in mice

Robert Burman; Erika Svedlund; Jenny Felth; Saadia Bashir Hassan; Anders Herrmann; Richard J. Clark; David J. Craik; Lars Bohlin; Per Claeson; Ulf Göransson; Joachim Gullbo

Cycloviolacin O2 is a small cyclic cysteine-rich protein belonging to the group of plant proteins called cyclotides. This cyclotide has been previously shown to exert cytotoxic activity against a variety of human tumor cell lines as well as primary cultures of human tumor cells in vitro. This study is the first evaluation of its tolerability and antitumor activity in vivo. Maximal-tolerated doses were estimated to 1.5 mg/kg for single intravenous (i.v.) dosing and 0.5 mg/kg for daily repeated dosing, respectively. Two different in vivo methods were used: the hollow fiber method with single dosing (i.v., 1.0 mg/kg) and traditional xenografts with repeated dosing over 2 weeks (i.v., 0.5 mg/kg daily, 5 days a week). The human tumor cell lines used displayed dose-dependent in vitro sensitivity (including growth in hollow fibers to confirm passage of cycloviolacin O2 through the polyvinylidene fluoride fibers), with IC5o values in the micromolar range. Despite this sensitivity in vitro, no significant antitumor effects were detected in vivo, neither with single dosing in the hollow fiber method nor with repeated dosing in xenografts. In summary, the results indicate that antitumor effects are minor or absent at tolerable (sublethal) doses, and cycloviolacin O2 has a very abrupt in vivo toxicity profile, with lethality after single injection at 2 mg/kg, but no signs of discomfort to the animals at 1.5 mg/kg. Repeated dosing of 1 mg/kg gave a local-inflammatory reaction at the site of injection after 2-3 days; lower doses were without complications.


Antioxidants & Redox Signaling | 2011

Interlocking Disulfides in Circular Proteins: Toward Efficient Oxidative Folding of Cyclotides

Teshome Leta Aboye; Richard J. Clark; Robert Burman; Marta Bajona Roig; David J. Craik; Ulf Göransson

Cyclotides are ultrastable plant proteins characterized by the presence of a cyclic amide backbone and three disulfide bonds that form a cystine knot. Because of their extreme stability, there has been significant interest in developing these molecules as a drug design scaffold. For this potential to be realized, efficient methods for the synthesis and oxidative folding of cyclotides need to be developed, yet we currently have only a basic understanding of the folding mechanism and the factors influencing this process. In this study, we determine the major factors influencing oxidative folding of the different subfamilies of cyclotides. The folding of all the cyclotides examined was heavily influenced by the concentration of redox reagents, with the folding rate and final yield of the native isomer greatly enhanced by high concentrations of oxidized glutathione. Addition of hydrophobic solvents to the buffer also enhanced the folding rates and appeared to alter the folding pathway. Significant deamidation and isoaspartate formation were seen when oxidation conditions were conducive to slow folding. The identification of factors that influence the folding and degradation pathways of cyclotides will facilitate the development of folding screens and optimized conditions for producing cyclotides and grafted analogs as stable peptide-based therapeutics.

Collaboration


Dive into the Robert Burman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Craik

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge