Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert C. Castellino is active.

Publication


Featured researches published by Robert C. Castellino.


Nature Reviews Neurology | 2007

Mechanisms of Disease: the PI3K–Akt–PTEN signaling node—an intercept point for the control of angiogenesis in brain tumors

Robert C. Castellino; Donald L. Durden

The overall prognosis for patients with high-grade glioma remains dismal, despite advances in treatment modalities including neurosurgery, radiation therapy and conventional cytotoxic chemotherapy. In this article, we review literature that provides a rationale for the use of antiangiogenic therapy to improve the treatment of high-grade neoplasms in the CNS. In particular, we focus our discussion on the central role of the phosphatidylinositol 3-kinase–Akt– phosphatase and tensin homolog (PI3K–Akt–PTEN) axis as a potential molecular target for the control of angiogenesis in brain tumors via the coordinated control of cell division, tumor growth, angiogenesis, apoptosis, invasion and cellular metabolism in the tumor and stromal compartments. We suggest that instead of inhibiting a single cell surface receptor, thereby leaving other receptors free to pulse survival, proliferative, angiogenic and invasive signals, a more effective way to approach the design of targeted therapy against brain tumors is to inhibit a nodal point where redundant cell surface receptor signals converge to transmit important, relatively conserved signaling events within the cell. The epigenetic and post-translational regulation of PI3K–Akt–PTEN signaling has a prominent role in brain tumor pathogenesis, and we therefore suggest that PI3K could be an important target for therapies that target brain tumors.


Neuro-oncology | 2014

The rationale for targeted therapies in medulloblastoma

Tobey J. MacDonald; Dolly Aguilera; Robert C. Castellino

Medulloblastoma (MB) is the most frequent malignant brain tumor in children. Patients with MB who are classified as having high-risk disease or those with recurrent disease respond poorly to current therapies and have an increased risk of MB-related mortality. Preclinical studies and molecular profiling of MB tumors have revealed upregulation or activation of several key signaling pathways such as the sonic hedgehog and WNT pathways. Although the exact mechanisms underlying MB tumorigenesis remain poorly understood, inhibiting these key pathways with molecularly targeted therapies represents an important approach to improving MB outcomes. Several molecularly targeted therapies are already under clinical investigation in MB patients. We discuss current preclinical and clinical data, as well as data from clinical trials of targeted therapies that are either ongoing or in development for MB.


PLOS ONE | 2010

Heterozygosity for Pten Promotes Tumorigenesis in a Mouse Model of Medulloblastoma

Robert C. Castellino; Benjamin G. Barwick; Matthew J. Schniederjan; Meghan C. Buss; Oren J. Becher; Dolores Hambardzumyan; Tobey J. MacDonald; Daniel J. Brat; Donald L. Durden

Background Recent publications have described an important role for cross talk between PI-3 kinase and sonic hedgehog signaling pathways in the pathogenesis of medulloblastoma. Methodology/Principal Findings We crossed mice with constitutive activation of Smoothened, SmoA1, with Pten deficient mice. Both constitutive and conditional Pten deficiency doubled the incidence of mice with symptoms of medulloblastoma and resulted in decreased survival. Analysis revealed a clear separation of gene signatures, with up-regulation of genes in the PI-3 kinase signaling pathway, including downstream activation of angiogenesis in SmoA1+/−; Pten +/− medulloblastomas. Western blotting and immunohistochemistry confirmed reduced or absent Pten, Akt activation, and increased angiogenesis in Pten deficient tumors. Down-regulated genes included genes in the sonic hedgehog pathway and tumor suppressor genes. SmoA1+/−; Pten +/+ medulloblastomas appeared classic in histology with increased proliferation and diffuse staining for apoptosis. In contrast, Pten deficient tumors exhibited extensive nodularity with neuronal differentiation separated by focal areas of intense staining for proliferation and virtually absent apoptosis. Examination of human medulloblastomas revealed low to absent PTEN expression in over half of the tumors. Kaplan-Meier analysis confirmed worse overall survival in patients whose tumor exhibited low to absent PTEN expression. Conclusions/Significance This suggests that PTEN expression is a marker of favorable prognosis and mouse models with activation of PI-3 kinase pathways may be important tools for preclinical evaluation of promising agents for the treatment of medulloblastoma.


Cancer Research | 2005

A Novel Role for Extracellular Signal-Regulated Kinase 5 and Myocyte Enhancer Factor 2 in Medulloblastoma Cell Death

Lisa-Marie Sturla; Christopher W. Cowan; Lillian M. Guenther; Robert C. Castellino; John Kim; Scott L. Pomeroy

Expression of the neurotrophin-3 receptor, tyrosine kinase C (TrkC), is associated with favorable prognosis in medulloblastoma patients. This may be due to increased tumor apoptosis induced by TrkC activation. Neurotrophin-3/TrkC-induced apoptosis is inhibited by the mitogen-activated protein (MAP) kinase (MAPK) pharmacologic antagonists SB203580 and PD98059. In addition to extracellular signal-regulated kinase (ERK)-1/2, PD98059 also inhibits the more recently identified neurotrophin-responsive MAPK, ERK5 (big MAPK 1). In the present study, we investigate the contribution of ERK5 and its target myocyte enhancer factor 2 (MEF2) to neurotrophin-3/TrkC-induced medulloblastoma cell death. Neurotrophin-3 not only enhanced ERK5 phosphorylation but also significantly enhanced the transcriptional activity of MEF2, a specific target of ERK5. Overexpression of both ERK5 and MEF2 induced a statistically significant increase in cell death of neurotrophin-3-responsive and nonresponsive medulloblastoma cell lines (Daoy-trkC and Daoy) and primary cultures of patched heterozygous mouse medulloblastomas. Only those cells expressing MAP/ERK kinase 5 (MEK5) plus ERK5 or MEF2 constructs underwent apoptosis, indicating that overexpression of either is sufficient to induce medulloblastoma cell death. Expression of a dominant-negative MEF2 or small interfering RNA for the ERK5 activator, MEK5, significantly inhibited neurotrophin-3-induced cell death. The dominant-negative MEF2 construct also blocked MEK5/ERK5-induced cell death, supporting a role for MEF2 downstream of ERK5. Co-immunoprecipitation studies revealed direct interaction of phosphorylated ERK5 with MEF2 in response to neurotrophin-3. Our investigation of the mechanism of neurotrophin-3/TrkC-induced apoptosis has identified a novel role for both MEK5/ERK5 and MEF2 in cell death, suggesting that these molecules can be exploited to induce apoptosis in both TrkC-expressing and non-expressing medulloblastoma cells.


Oncogene | 2015

The WIP1 oncogene promotes progression and invasion of aggressive medulloblastoma variants.

Meghan C. Buss; Marc Remke; Juhyun Lee; Khanjan Gandhi; Matthew J. Schniederjan; Marcel Kool; Paul A. Northcott; Stefan M. Pfister; Michael D. Taylor; Robert C. Castellino

Recent studies suggest that medulloblastoma, the most common malignant brain tumor of childhood, is comprised of four disease variants. The WIP1 oncogene is overexpressed in Group 3 and 4 tumors, which contain medulloblastomas with the most aggressive clinical behavior. Our data demonstrate increased WIP1 expression in metastatic medulloblastomas, and inferior progression-free and overall survival of patients with WIP1 high-expressing medulloblastoma. Microarray analysis identified upregulation of genes involved in tumor metastasis, including the G protein-coupled receptor CXCR4, in medulloblastoma cells with high WIP1 expression. Stimulation with the CXCR4 ligand SDF1α activated PI-3 kinase signaling, and promoted growth and invasion of WIP1 high-expressing medulloblastoma cells in a p53-dependent manner. When xenografted into the cerebellum of immunodeficient mice, medulloblastoma cells with stable or endogenous high WIP1 expression exhibited strong expression of CXCR4 and activated AKT in primary and invasive tumor cells. WIP1 or CXCR4 knockdown inhibited medulloblastoma growth and invasion. WIP1 knockdown also improved the survival of mice xenografted with WIP1 high-expressing medulloblastoma cells. WIP1 knockdown inhibited cell surface localization of CXCR4 by suppressing expression of the G protein receptor kinase 5, GRK5. Restoration of wild-type GRK5 promoted Ser339 phosphorylation of CXCR4 and inhibited the growth of WIP1-stable medulloblastoma cells. Conversely, GRK5 knockdown inhibited Ser339 phosphorylation of CXCR4, increased cell surface localization of CXCR4 and promoted the growth of medulloblastoma cells with low WIP1 expression. These results demonstrate crosstalk among WIP1, CXCR4 and GRK5, which may be important for the aggressive phenotype of a subclass of medulloblastomas in children.


Carcinogenesis | 2015

Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression

Rita Nahta; Fahd Al-Mulla; Rabeah Al-Temaimi; Amedeo Amedei; Rafaela Andrade-Vieira; Sarah N. Bay; Dustin G. Brown; Gloria M. Calaf; Robert C. Castellino; Karine A. Cohen-Solal; Anna Maria Colacci; Nichola Cruickshanks; Paul Dent; Riccardo Di Fiore; Stefano Forte; Gary S. Goldberg; Roslida A. Hamid; Harini Krishnan; Dale W. Laird; Ahmed Lasfar; Paola A. Marignani; Lorenzo Memeo; Chiara Mondello; Christian C. Naus; Richard Ponce-Cusi; Jayadev Raju; Debasish Roy; Rabindra Roy; Elizabeth P. Ryan; Hosni K. Salem

As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.


Pediatric Blood & Cancer | 2016

Successful Retreatment of a Child with a Refractory Brainstem Ganglioglioma with Vemurafenib.

Dolly Aguilera; Anna J. Janss; Claire Mazewski; Robert C. Castellino; Matthew J. Schniederjan; Laura L. Hayes; Barunashish Brahma; Lauren Fogelgren; Tobey J. MacDonald

A child with brainstem ganglioglioma underwent subtotal resection and focal radiation. Magnetic resonance imaging confirmed tumor progression 6 months later. Another partial resection revealed viable BRAF V600E‐positive residual tumor. Vemurafenib (660 mg/m2/dose) was administered twice daily, resulting in >70% tumor reduction with sustained clinical improvement for 1 year. Vemurafenib was then terminated, but significant tumor progression occurred 3 months later. Vemurafenib was restarted, resulting in partial response. Toxicities included Grade I pruritus and Grade II rash. Vemurafenib was effectively crushed and administered in solution via nasogastric tube. We demonstrate benefit from restarting vemurafenib therapy.


Molecular Pharmacology | 2014

Insulin-like growth factor-1 receptor signaling increases the invasive potential of human epidermal growth factor receptor 2-overexpressing breast cancer cells via Src-focal adhesion kinase and forkhead box protein M1.

Eduardo Sanabria-Figueroa; Siobhan M. Donnelly; Kevin Chu Foy; Meghan C. Buss; Robert C. Castellino; Elisavet Paplomata; LaTonia Taliaferro-Smith; Pravin T. P. Kaumaya; Rita Nahta

Resistance to the human epidermal growth factor receptor (HER2)–targeted antibody trastuzumab is a major clinical concern in the treatment of HER2-positive metastatic breast cancer. Increased expression or signaling from the insulin-like growth factor-1 receptor (IGF-1R) has been reported to be associated with trastuzumab resistance. However, the specific molecular and biologic mechanisms through which IGF-1R promotes resistance or disease progression remain poorly defined. In this study, we found that the major biologic effect promoted by IGF-1R was invasion, which was mediated by both Src-focal adhesion kinase (FAK) signaling and Forkhead box protein M1 (FoxM1). Cotargeting IGF-1R and HER2 using either IGF-1R antibodies or IGF-1R short hairpin RNA in combination with trastuzumab resulted in significant but modest growth inhibition. Reduced invasion was the most significant biologic effect achieved by cotargeting IGF-1R and HER2 in trastuzumab-resistant cells. Constitutively active Src blocked the anti-invasive effect of IGF-1R/HER2 cotargeted therapy. Furthermore, knockdown of FoxM1 blocked IGF-1–mediated invasion, and dual targeting of IGF-1R and HER2 reduced expression of FoxM1. Re-expression of FoxM1 restored the invasive potential of IGF-1R knockdown cells treated with trastuzumab. Overall, our results strongly indicate that therapeutic combinations that cotarget IGF-1R and HER2 may reduce the invasive potential of cancer cells that are resistant to trastuzumab through mechanisms that depend in part on Src and FoxM1.


Current Pharmaceutical Design | 2009

PI-3 Kinase-PTEN Signaling Node: An Intercept Point for the Control of Angiogenesis

Robert C. Castellino; Carrie R. Muh; Donald L. Durden

Angiogenesis is tightly regulated by opposing mechanisms in mammalian cells and is controlled by the angiogenic switch. Other review articles have described a central role for the PTEN/PI-3 kinase/AKT signaling node in the coordinate control of cell division, tumor growth, apoptosis, invasion and cellular metabolism [1, 2]. In this review, we focus on literature that supports the PTEN/PI-3 kinase/AKT signaling node as a major control point for the angiogenic switch in both the on and off positions. We also discuss the rationale for designing small molecule drugs that target the PTEN/PI-3 kinase/AKT signaling node for therapeutic intervention. Our hypothesis is that, instead of inhibiting one cell surface receptor, such as VEGFR2 with bevacizumab (Avastin), thereby leaving a significant number of receptors free to pulse angiogenic signals, a more effective strategy may be to regulate signaling through an intercept node where redundant cell surface receptor signals converge to transmit important signaling events within the cell. This therapeutic configuration brings coordinate control over multiple cell surface receptors in concert with a physiologic response which may combine arrest of cell cycle progression with growth inhibition and the induction of genes involved in specialized functions such as movement, which are all required for the complex process of angiogenesis to occur in a temporal-spatial paradigm.


Current Medicinal Chemistry | 2013

MEK inhibition increases lapatinib sensitivity via modulation of FOXM1

Sylvia S. Gayle; Robert C. Castellino; Meghan C. Buss; Rita Nahta

The standard targeted therapy for HER2-overexpressing breast cancer is the HER2 monoclonal antibody, trastuzumab. Although effective, many patients eventually develop trastuzumab resistance. The dual EGFR/HER2 small molecule tyrosine kinase inhibitor lapatinib is approved for use in trastuzumab-refractory metastatic HER2-positive breast cancer. However, lapatinib resistance is a problem as most patients with trastuzumab-refractory disease do not benefit from lapatinib. Understanding the mechanisms underlying lapatinib resistance may ultimately facilitate development of new therapeutic strategies for HER2-overexpressing breast cancer. Our current results indicate that MEK inhibition increases lapatinib-mediated cytotoxicity in resistant HER2-overexpressing breast cancer cells. We genetically and pharmacologically blocked MEK/ERK signaling and evaluated lapatinib response by trypan blue exclusion, anchorage-independent growth assays, flow cytometric cell cycle and apoptosis analysis, and in tumor xenografts. Combined MEK inhibition and lapatinib treatment reduced phosphorylated ERK more than single agent treatment. In addition, Western blots, immunofluorescence, and immunohistochemistry demonstrated that the combination of MEK inhibitor plus lapatinib reduced nuclear expression of the MEK/ERK downstream proto-oncogene FOXM1. Genetic knockdown of MEK was tested for the ability to increase lapatinib-mediated cell cycle arrest or apoptosis in JIMT-1 and MDA361 cells. Finally, xenograft studies demonstrated that combined pharmacological inhibition of MEK plus lapatinib suppressed tumor growth and reduced expression of FOXM1 in HER2-overexpressing breast cancers that are resistant to trastuzumab and lapatinib. Our results suggest that FoxM1 contributes to lapatinib resistance downstream of MEK signaling, and supports further study of pharmacological MEK inhibition to improve response to lapatinib in HER2-overexpressing trastuzumab-resistant breast cancer.

Collaboration


Dive into the Robert C. Castellino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge