Robert C. De Lisle
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert C. De Lisle.
Infection and Immunity | 2004
Oxana Norkina; Tim G. Burnett; Robert C. De Lisle
ABSTRACT We recently reported the inflammation of the cystic fibrosis (CF) mouse small intestine, and we hypothesized bacterial overgrowth as a possible cause. Quantitative PCR of bacterial 16S genomic DNA in the CF mouse small intestine revealed an increase of greater than 40-fold compared to controls. Sequencing of 16S PCR products and Gram staining showed that the majority of bacteria in the CF mouse intestine were gram negative. Bacteria were observed to colonize the mucus that accumulates in the intestinal lumen of mice with CF. Impaired Paneth cell defenses were suggested by observation of partially dispersed Paneth granules in the mucus plugs of CF mouse intestinal crypts, and this mucus was strongly immunoreactive for Paneth cell bactericidal products. The role of bacterial overgrowth in intestinal inflammation in CF was tested by treating mice with oral antibiotics (ciprofloxacin and metronidazole) for 3 weeks, which reduced bacterial load in the CF mouse small intestine over 400-fold. Antibiotic treatment decreased the expression of the inflammation-related genes mast cell protease 2, leucine-rich α2 glycoprotein/leucine-rich high endothelial venule glycoprotein, suppressor of cytokine signaling 3, hematopoietic cell transcript 1, and resistin-like molecule β/found in inflammatory zone 2, all of which were no longer expressed at levels significantly different from control levels. The reduction of intestinal bacteria also significantly improved the growth of CF mice but had no effect on the growth of wild-type mice. These data suggest that bacterial overgrowth in the CF mouse small intestine has a role in inflammation and contributes to the failure to thrive in this mouse model of CF.
Journal of The American Society of Nephrology | 2006
Brenda S. Magenheimer; Patricia L. St. John; Kathryn Isom; Dale R. Abrahamson; Robert C. De Lisle; Darren P. Wallace; Robin L. Maser; Jared J. Grantham; James P. Calvet
Metanephric organ culture has been used to determine whether embryonic kidney tubules can be stimulated by cAMP to form cysts. Under basal culture conditions, wild-type kidneys from embryonic day 13.5 to 15.5 mice grow in size and continue ureteric bud branching and tubule formation over a 4- to 5-d period. Treatment of these kidneys with 8-Br-cAMP or the cAMP agonist forskolin induced the formation of dilated tubules within 1 h, which enlarged over several days and resulted in dramatically expanded cyst-like structures of proximal tubule and collecting duct origin. Tubule dilation was reversible upon withdrawal of 8-Br-cAMP and was inhibited by the cAMP-dependent protein kinase inhibitor H89 and the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTR(inh)172. For further testing of the role of CFTR, metanephric cultures were prepared from mice with a targeted mutation of the Cftr gene. In contrast to kidneys from wild-type mice, those from Cftr -/- mice showed no evidence of tubular dilation in response to 8-Br-cAMP, indicating that CFTR Cl(-) channels are functional in embryonic kidneys and are required for cAMP-driven tubule expansion. A requirement for transepithelial Cl(-) transport was demonstrated by inhibiting the basolateral Na(+),K(+),2Cl(-) co-transporter with bumetanide, which effectively blocked all cAMP-stimulated tubular dilation. For determination of whether cystic dilation occurs to a greater extent in PKD kidneys in response to cAMP, Pkd1(m1Bei) -/- embryonic kidneys were treated with 8-Br-cAMP and were found to form rapidly CFTR- and Na(+),K(+),2Cl(-) co-transporter-dependent cysts that were three- to six-fold larger than those of wild-type kidneys. These results suggest that cAMP can stimulate fluid secretion early in renal tubule development during the time when renal cysts first appear in PKD kidneys and that PKD-deficient renal tubules are predisposed to abnormally increased cyst expansion in response to elevated levels of cAMP.
PLOS Genetics | 2012
Jim Geiser; Koen J. T. Venken; Robert C. De Lisle; Glen K. Andrews
Mutations in the human Zip4 gene cause acrodermatitis enteropathica, a rare, pseudo-dominant, lethal genetic disorder. We created a tamoxifen-inducible, enterocyte-specific knockout of this gene in mice which mimics this human disorder. We found that the enterocyte Zip4 gene in mice is essential throughout life, and loss-of-function of this gene rapidly leads to wasting and death unless mice are nursed or provided excess dietary zinc. An initial effect of the knockout was the reprogramming of Paneth cells, which contribute to the intestinal stem cell niche in the crypts. Labile zinc in Paneth cells was lost, followed by diminished Sox9 (sex determining region Y-box 9) and lysozyme expression, and accumulation of mucin, which is normally found in goblet cells. This was accompanied by dysplasia of the intestinal crypts and significantly diminished small intestine cell division, and attenuated mTOR1 activity in villus enterocytes, indicative of increased catabolic metabolism, and diminished protein synthesis. This was followed by disorganization of the absorptive epithelium. Elemental analyses of small intestine, liver, and pancreas from Zip4-intestine knockout mice revealed that total zinc was dramatically and rapidly decreased in these organs whereas iron, manganese, and copper slowly accumulated to high levels in the liver as the disease progressed. These studies strongly suggest that wasting and lethality in acrodermatitis enteropathica patients reflects the loss-of-function of the intestine zinc transporter ZIP4, which leads to abnormal Paneth cell gene expression, disruption of the intestinal stem cell niche, and diminished function of the intestinal mucosa. These changes, in turn, cause a switch from anabolic to catabolic metabolism and altered homeostasis of several essential metals, which, if untreated by excess dietary zinc, leads to dramatic weight loss and death.
Gut microbes | 2013
Susan V. Lynch; Katherine C. Goldfarb; Yvette K. Wild; Weidong Kong; Robert C. De Lisle; Eoin L. Brodie
The composition of the gastrointestinal microbiome is increasingly recognized as a crucial contributor to immune and metabolic homeostasis—deficiencies in which are characteristic of cystic fibrosis (CF) patients. The murine model (CFTR−/−, CF), has, in previous studies, demonstrated characteristic CF gastrointestinal (GI) manifestations including slowed transit and significant upregulation of genes associated with inflammation. To determine if characteristics of the microbiome are associated with these phenotypes we used a phylogenetic microarray to compare small intestine bacterial communities of wild type and congenic CF mice. Loss of functional CFTR is associated with significant decreases in GI bacterial community richness, evenness and diversity and reduced relative abundance of putative protective species such as Acinetobacter lwoffii and a multitude of Lactobacilliales members. CF mice exhibited significant enrichment of Mycobacteria species and Bacteroides fragilis, previously associated with GI infection and immunomodulation. Antibiotic administration to WT and CF animals resulted in convergence of their microbiome composition and significant increases in community diversity in CF mice. These communities were characterized by enrichment of members of the Lactobacillaceae and Bifidobacteriaceae and reduced abundance of Enterobacteriaceae and Clostridiaceae. These data suggest that Enterobacteria and Clostridia species, long associated with small intestinal overgrowth and inflammatory bowel disease, may suppress both ileal bacterial diversity and the particular species which maintain motility and immune homeostasis in this niche. Thus, these data provide the first indications that GI bacterial colonization is strongly impacted by the loss of functional CFTR and opens up avenues for alternative therapeutic approaches to improve CF disease management.
Cold Spring Harbor Perspectives in Medicine | 2013
Robert C. De Lisle; Drucy Borowitz
The clinical manifestations of cystic fibrosis (CF) result from dysfunction of the cystic fibrosis transmembrane regulator protein (CFTR). The majority of people with CF have a limited life span as a consequence of CFTR dysfunction in the respiratory tract. However, CFTR dysfunction in the gastrointestinal (GI) tract occurs earlier in ontogeny and is present in all patients, regardless of genotype. The same pathophysiologic triad of obstruction, infection, and inflammation that causes disease in the airways also causes disease in the intestines. This article describes the effects of CFTR dysfunction on the intestinal tissues and the intraluminal environment. Mouse models of CF have greatly advanced our understanding of the GI manifestations of CF, which can be directly applied to understanding CF disease in humans.
PLOS ONE | 2013
Jim Geiser; Robert C. De Lisle; Glen K. Andrews
Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy.
Journal of Pediatric Gastroenterology and Nutrition | 2006
Robert C. De Lisle; Eileen Roach; Oxana Norkina
Objectives: Mucus accumulation in cystic fibrosis (CF) is involved in blockage of the distal small intestine. Because expression of mucin genes and mucus secretion can be increased by infection and previous work indicated that small intestinal bacterial overgrowth occurs in CF, we tested whether reduction of bacterial load by antibiotic treatment would reduce mucin gene expression and mucus accumulation in the CF mouse small intestine. Methods: CF transmembrane conductance regulator null (cftrtm1UNC) and wild type littermates were treated with ciprofloxacin and metronidazole for 3 weeks. Muc2 and Muc3 gene expression were measured by quantitative reverse-transcriptase polymerase chain reaction. Periodic acid Schiff (PAS) staining and morphometry were used to measure the size of mucus droplets within goblet cells and dilation of the intestinal crypt lumen, as estimates of mucus secretion and accumulation. Results: Antibiotic treatment did not significantly affect Muc2 and Muc3 gene expression in CF mice. In untreated CF mice, the crypt lumen was almost sevenfold wider than wild type. Antibiotic treatment of CF mice reduced the intensity of PAS crypt lumen staining, and the lumen width was decreased by approximately 25%. The area occupied by PAS-positive material in goblet cells was significantly greater in tissues from antibiotic treated mice. Conclusions: Eradication of bacterial overgrowth in CF mice significantly decreased mucus secretion and accumulation in intestinal crypts without an effect on mucin gene expression. It is proposed that bacterial overgrowth stimulates mucus secretion, which contributes to its accumulation in the small intestine. Control of bacterial overgrowth is expected to reduce mucus accumulation and may improve intestinal function and overall health in CF.
Journal of Pediatric Gastroenterology and Nutrition | 2011
Robert C. De Lisle; Racquel Mueller; Megan Boyd
Objectives: The intestinal mucosal barrier protects the body from the large numbers of microbes that inhabit the intestines and the molecules they release. Intestinal barrier function is impaired in humans with cystic fibrosis (CF), including reduced activity of the lipopolysaccharide-detoxifying enzyme intestinal alkaline phosphatase (IAP) and increased permeability. The objective of this study was to determine the suitability of using the CF mouse to investigate intestinal barrier function, and whether interventions that are beneficial for the CF mouse intestinal phenotype (antibiotics or laxative), would improve barrier function. Also tested were the effects of exogenous IAP administration. Materials and Methods: The Cftrtm1UNC mouse was used. IAP expression (encoded by the murine Akp3 gene) was measured by quantitative reverse transcription-polymerase chain reaction and enzyme activity. Intestinal permeability was assessed by measuring rhodamine-dextran plasma levels following gavage. Results: CF mice had 40% Akp3 mRNA expression and 30% IAP enzyme activity, as compared with wild-type mice. Oral antibiotics and laxative treatments normalized Akp3 expression and IAP enzyme activity in the CF intestine. CF mice had a 5-fold greater transfer of rhodamine-dextran from gut lumen to blood. Antibiotic and laxative treatments reduced intestinal permeability in CF mice. Administration of exogenous purified IAP to CF mice reduced intestinal permeability to wild-type levels and reduced small intestinal bacterial overgrowth by >80%. Conclusions: The CF mouse intestine has impaired mucosal barrier function, similar to human CF. Interventions that improve other aspects of the CF intestinal phenotype (antibiotics and laxative) also increase IAP activity and decrease intestinal permeability in CF mice. Exogenous IAP improve permeability and strongly reduce bacterial overgrowth in CF mice, suggesting this may be a useful therapy for CF.
BMC Gastroenterology | 2010
Robert C. De Lisle; Racquel Mueller; Eileen Roach
BackgroundCystic fibrosis (CF) is caused by mutations in the CFTR gene that impair the function of CFTR, a cAMP-regulated anion channel. In the small intestine loss of CFTR function creates a dehydrated, acidic luminal environment which is believed to cause an accumulation of mucus, a phenotype characteristic of CF. CF mice have small intestinal bacterial overgrowth, an altered innate immune response, and impaired intestinal transit. We investigated whether lubiprostone, which can activate the CLC2 Cl- channel, would improve the intestinal phenotype in CF mice.MethodsCftrtm1UNC (CF) and wildtype (WT) littermate mice on the C57BL/6J background were used. Lubiprostone (10 μg/kg-day) was administered by gavage for two weeks. Mucus accumulation was estimated from crypt lumen widths in periodic acid-Schiff base, Alcian blue stained sections. Luminal bacterial load was measured by qPCR for the bacterial 16S gene. Gastric emptying and small intestinal transit in fasted mice were assessed using gavaged rhodamine dextran. Gene expression was evaluated by Affymetrix Mouse430 2.0 microarray and qRT-PCR.ResultsCrypt width in control CF mice was 700% that of WT mice (P < 0.001). Lubiprostone did not affect WT crypt width but, unexpectedly, increased CF crypt width 22% (P = 0.001). Lubiprostone increased bacterial load in WT mice to 490% of WT control levels (P = 0.008). Conversely, lubiprostone decreased bacterial overgrowth in CF mice by 60% (P = 0.005). Lubiprostone increased gastric emptying at 20 min postgavage in both WT (P < 0.001) and CF mice (P < 0.001). Lubiprostone enhanced small intestinal transit in WT mice (P = 0.024) but not in CF mice (P = 0.377). Among other innate immune markers, expression of mast cell genes was elevated 4-to 40-fold in the CF intestine as compared to WT, and lubiprostone treatment of CF mice decreased expression to WT control levels.ConclusionsThese results indicate that lubiprostone has some benefits for the CF intestinal phenotype, especially on bacterial overgrowth and the innate immune response. The unexpected observation of increased mucus accumulation in the crypts of lubiprostone-treated CF mice suggests the possibility that lubiprostone increases mucus secretion.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2008
Robert C. De Lisle; Weihong Xu; Bruce A. Roe; Donna Ziemer
The Dmbt1 gene encodes alternatively spliced glycoproteins that are either membrane-associated or secreted epithelial products. Functions proposed for Dmbt1 include it being a tumor suppressor, having roles in innate immune defense and inflammation, and being a Golgi-sorting receptor in the exocrine pancreas. The heavily sulfated membrane glycoprotein mucin-like glycoprotein (Muclin) is a Dmbt1 product that is strongly expressed in organs of the gastrointestinal (GI) system. To explore Muclins functions in the GI system, the Dmbt1 gene was targeted to produce Muclin-deficient mice. Muclin-deficient mice have normal body weight gain and are fertile. The Muclin-deficient mice did not develop GI tumors, even when crossed with mice lacking the known tumor suppressor p53. When colitis was induced by dextran sulfate sodium, there was no significant difference in disease severity in Muclin-deficient mice. Also, when acute pancreatitis was induced with supraphysiological caerulein, there was no difference in disease severity in the Muclin-deficient mice. Exocrine pancreatic function was impaired, as measured by attenuated neurohormonal-stimulated amylase release from Muclin-deficient acinar cells. Also, by [(35)S]Met/Cys pulse-chase analysis, traffic of newly synthesized protein to the stimulus-releasable pool was significantly retarded in Muclin-deficient cells compared with wild type. Thus Muclin deficiency impairs trafficking of regulated proteins to a stimulus-releasable pool in the exocrine pancreas.