Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert C. Fuhlbrigge is active.

Publication


Featured researches published by Robert C. Fuhlbrigge.


Nature | 2008

Identification of cells initiating human melanomas.

Tobias Schatton; George F. Murphy; Natasha Y. Frank; Kazuhiro Yamaura; Ana Maria Waaga-Gasser; Martin Gasser; Qian Zhan; Stefan Jordan; Lyn M. Duncan; Carsten Weishaupt; Robert C. Fuhlbrigge; Thomas S. Kupper; Mohamed H. Sayegh; Markus H. Frank

Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.


Nature Reviews Immunology | 2004

Immune surveillance in the skin: mechanisms and clinical consequences

Thomas S. Kupper; Robert C. Fuhlbrigge

The skin, as the primary interface between the body and the environment, provides the first line of defence against a broad array of microbial pathogens and trauma. In addition to its properties as a physical barrier, the skin has many active defence mechanisms. In this review, we discuss the interaction between the innate and adaptive immune systems in the skin as a model for immune function at epithelial-cell interfaces with the environment. How these mechanisms account for the robust nature of cutaneous immune surveillance and how their dysregulation drives the pathogenesis of inflammatory skin disorders and skin-based tumours are the subjects of this review.


Nature | 1997

Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells

Robert C. Fuhlbrigge; Kieffer Jd; Dieter Armerding; Thomas S. Kupper

T cells play a pathogenic role in many inflammatory and certain malignant skin diseases, including psoriasis, atopic and allergic contact dermatitis, and cutaneous T-cell lymphoma. Memory T cells that infiltrate the skin express a unique skin-homing receptor called cutaneous lymphocyte-associated antigen (CLA), a carbohydrate epitope that facilitates the targeting of T cells to inflamed skin. CLA is defined by both its reactivity with a unique monoclonal antibody, HECA-452, and its activity as a ligand for E-selectin, but the structure of the protein component of CLA has not previously been defined. Here we report that CLA is an inducible carbohydrate modification of P-selectin glycoprotein ligand-1 (PSGL-1), a known surface glycoprotein that is expressed constitutively on all human peripheral-blood T cells. Cultured peripheral-blood T cells can be differentiated into CLA-bearing cells, which bind both E-selectin and P-selectin, or CLA-negative cells, which bind P-selectin but do not bind E-selectin, suggesting that there is independent regulation of selectin-binding phenotypes. We propose that differential post-translational modification of a single cell-surface receptor, PSGL-1, mediated by fucosyltransferase VII, serves as a mechanism for regulating tissue-specific homing of memory T cells.


Nature | 2012

Skin infection generates non-migratory memory CD8 + T RM cells providing global skin immunity

Xiaodong Jiang; Rachael A. Clark; Luzheng Liu; Amy J. Wagers; Robert C. Fuhlbrigge; Thomas S. Kupper

Protective T-cell memory has long been thought to reside in blood and lymph nodes, but recently the concept of immune memory in peripheral tissues mediated by resident memory T (TRM) cells has been proposed. Here we show in mice that localized vaccinia virus (VACV) skin infection generates long-lived non-recirculating CD8+ skin TRM cells that reside within the entire skin. These skin TRM cells are potent effector cells, and are superior to circulating central memory T (TCM) cells at providing rapid long-term protection against cutaneous re-infection. We find that CD8+ T cells are rapidly recruited to skin after acute VACV infection. CD8+ T-cell recruitment to skin is independent of CD4+ T cells and interferon-γ, but requires the expression of E- and P-selectin ligands by CD8+ T cells. Using parabiotic mice, we further show that circulating CD8+ TCM and CD8+ skin TRM cells are both generated after skin infection; however, CD8+ TCM cells recirculate between blood and lymph nodes whereas TRM cells remain in the skin. Cutaneous CD8+ TRM cells produce effector cytokines and persist for at least 6 months after infection. Mice with CD8+ skin TRM cells rapidly cleared a subsequent re-infection with VACV whereas mice with circulating TCM but no skin TRM cells showed greatly impaired viral clearance, indicating that TRM cells provide superior protection. Finally, we show that TRM cells generated as a result of localized VACV skin infection reside not only in the site of infection, but also populate the entire skin surface and remain present for many months. Repeated re-infections lead to progressive accumulation of highly protective TRM cells in non-involved skin. These findings have important implications for our understanding of protective immune memory at epithelial interfaces with the environment, and suggest novel strategies for vaccines that protect against tissue tropic organisms.


Journal of Immunology | 2006

The majority of human peripheral blood CD4+CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors.

Kazuki Hirahara; Luzheng Liu; Rachael A. Clark; Keiichi Yamanaka; Robert C. Fuhlbrigge; Thomas S. Kupper

CD4+CD25+ T regulatory cells (Treg) are thought to be important in the peripheral tolerance. Recent evidence suggests that human peripheral blood CD4+CD25+ T cells are heterogeneous and contain both CD4+CD25high T cells with potent regulatory activity and many more CD4+CD25low/med nonregulatory T cells. In this study, we found that virtually all peripheral blood CD4+CD25highFoxp3+ Treg expressed high levels of the chemokine receptor CCR4. In addition, 80% of Treg expressed cutaneous lymphocyte Ag (CLA) and 73% expressed CCR6. These molecules were functional, as CLA+ Treg showed CD62E ligand activity and demonstrable chemotactic responses to the CCR4 ligands CCL22 and CCL17 and to the CCR6 ligand CCL20. The phenotype and chemotactic response of these Treg were significantly different from those of CD4+CD25med nonregulatory T cells. We further demonstrated that blood CLA+ Treg inhibited CD4+CD25− T cell proliferation induced by anti-CD3. Based on homing receptor profile, CLA+ Treg should enter normal skin. We next isolated CD4+CD25high T cells directly from normal human skin; these cells suppressed proliferation of skin CD4+CD25− T cells. Therefore, the majority of true circulating Treg express functional skin-homing receptors, and human Treg may regulate local immune responses in normal human skin.


Nature Medicine | 2012

Robust tumor immunity to melanoma mediated by interleukin-9–producing T cells

Rahul Purwar; Christoph Schlapbach; Sheng Xiao; Hong Soon Kang; Wassim Elyaman; Xiaodong Jiang; Anton M Jetten; Samia J. Khoury; Robert C. Fuhlbrigge; Vijay K. Kuchroo; Rachael A. Clark; Thomas S. Kupper

Interleukin-9 (IL-9) is a T cell cytokine that acts through a γC-family receptor on target cells and is associated with inflammation and allergy. We determined that T cells from mice deficient in the T helper type 17 (TH17) pathway genes encoding retinoid-related orphan receptor γ (ROR-γ) and IL-23 receptor (IL-23R) produced abundant IL-9, and we found substantial growth inhibition of B16F10 melanoma in these mice. IL-9–blocking antibodies reversed this tumor growth inhibition and enhanced tumor growth in wild-type (WT) mice. Il9r−/− mice showed accelerated tumor growth, and administration of recombinant IL-9 (rIL-9) to tumor-bearing WT and Rag1−/− mice inhibited melanoma as well as lung carcinoma growth. Adoptive transfer of tumor-antigen–specific TH9 cells into both WT and Rag1−/− mice suppressed melanoma growth; this effect was abrogated by treatment with neutralizing antibodies to IL-9. Exogenous rIL-9 inhibited tumor growth in Rag1−/− mice but not in mast-cell–deficient mice, suggesting that the targets of IL-9 in this setting include mast cells but not T or B cells. In addition, we found higher numbers of TH9 cells in normal human skin and blood compared to metastatic lesions of subjects with progressive stage IV melanoma. These results suggest a role for IL-9 in tumor immunity and offer insight into potential therapeutic strategies.


Cellular and Molecular Life Sciences | 2012

Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Current knowledge assembled at an international workshop at BfR, Germany.

Matthias Peiser; T. Tralau; J. Heidler; A. M. Api; J. H. E. Arts; D. A. Basketter; J. English; Thomas L. Diepgen; Robert C. Fuhlbrigge; A. A. Gaspari; Jeanne Duus Johansen; A. T. Karlberg; Ian Kimber; J. P. Lepoittevin; M. Liebsch; Howard I. Maibach; Stefan F. Martin; H. F. Merk; T. Platzek; Thomas Rustemeyer; A. Schnuch; R. J. Vandebriel; Ian R. White; Andreas Luch

Contact allergies are complex diseases, and one of the important challenges for public health and immunology. The German ‘Federal Institute for Risk Assessment’ hosted an ‘International Workshop on Contact Dermatitis’. The scope of the workshop was to discuss new discoveries and developments in the field of contact dermatitis. This included the epidemiology and molecular biology of contact allergy, as well as the development of new in vitro methods. Furthermore, it considered regulatory aspects aiming to reduce exposure to contact sensitisers. An estimated 15–20% of the general population suffers from contact allergy. Workplace exposure, age, sex, use of consumer products and genetic predispositions were identified as the most important risk factors. Research highlights included: advances in understanding of immune responses to contact sensitisers, the importance of autoxidation or enzyme-mediated oxidation for the activation of chemicals, the mechanisms through which hapten-protein conjugates are formed and the development of novel in vitro strategies for the identification of skin-sensitising chemicals. Dendritic cell cultures and structure-activity relationships are being developed to identify potential contact allergens. However, the local lymph node assay (LLNA) presently remains the validated method of choice for hazard identification and characterisation. At the workshop the use of the LLNA for regulatory purposes and for quantitative risk assessment was also discussed.


Journal of Immunology | 2004

E-Selectin, Thymus- and Activation-Regulated Chemokine/CCL17, and Intercellular Adhesion Molecule-1 Are Constitutively Coexpressed in Dermal Microvessels: A Foundation for a Cutaneous Immunosurveillance System

Benjamin F. Chong; Jo Ellen Murphy; Thomas S. Kupper; Robert C. Fuhlbrigge

The success of the cutaneous immune system reflects its ability to rapidly and efficiently recruit leukocytes to areas of trauma and infection. Skin-homing memory T cells expressing cutaneous lymphocyte-associated Ag tether on the walls of postcapillary venules in inflamed skin via interaction with endothelial E-selectin and roll in response to the shear stress imparted by flowing blood. Rolling cells sample the vascular surface for chemoattractant compounds (e.g., thymus- and activation-regulated chemokine/CCL17 interacting with CCR4 on the leukocyte surface) and, if successfully stimulated, progress to firm arrest and transmigration mediated by LFA-1 and vascular ICAM-1. Although it is established that this sequence of events draws T cells into inflamed skin, the mechanisms directing trafficking of T cells to noninflamed skin are less well characterized. We hypothesized that basal expression and colocalization of E-selectin, chemokine (e.g., CCL17), and ICAM-1 in dermal vessels could serve to recruit T cells to noninflamed human skin. Immunohistochemical staining for E-selectin and CD31 demonstrated E-selectin expression in a restricted subset of dermal vessels in noninflamed human skin from three different sites. Confocal multicolor immunofluorescence imaging revealed a nonuniform distribution of E-selectin in dermal vessels as well as colocalization of E-selectin with CCL17 and ICAM-1. Coexpression of these molecules on blood vessels in noninflamed skin provides the basis for a model of cutaneous immunosurveillance system active in the absence of pathologic inflammation.


Nature | 2017

Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism

Y. Pan; Tian Tian; Chang Ook Park; Serena Y. Lofftus; Shenglin Mei; Xing Liu; Chi Luo; J.T. O’Malley; A. Gehad; J. Teague; Sherrie J. Divito; Robert C. Fuhlbrigge; Pere Puigserver; James G. Krueger; Gökhan S. Hotamisligil; Rachael A. Clark; Thomas S. Kupper

Tissue-resident memory T (TRM) cells persist indefinitely in epithelial barrier tissues and protect the host against pathogens. However, the biological pathways that enable the long-term survival of TRM cells are obscure. Here we show that mouse CD8+ TRM cells generated by viral infection of the skin differentially express high levels of several molecules that mediate lipid uptake and intracellular transport, including fatty-acid-binding proteins 4 and 5 (FABP4 and FABP5). We further show that T-cell-specific deficiency of Fabp4 and Fabp5 (Fabp4/Fabp5) impairs exogenous free fatty acid (FFA) uptake by CD8+ TRM cells and greatly reduces their long-term survival in vivo, while having no effect on the survival of central memory T (TCM) cells in lymph nodes. In vitro, CD8+ TRM cells, but not CD8+ TCM cells, demonstrated increased mitochondrial oxidative metabolism in the presence of exogenous FFAs; this increase was not seen in Fabp4/Fabp5 double-knockout CD8+ TRM cells. The persistence of CD8+ TRM cells in the skin was strongly diminished by inhibition of mitochondrial FFA β-oxidation in vivo. Moreover, skin CD8+ TRM cells that lacked Fabp4/Fabp5 were less effective at protecting mice from cutaneous viral infection, and lung Fabp4/Fabp5 double-knockout CD8+ TRM cells generated by skin vaccinia virus (VACV) infection were less effective at protecting mice from a lethal pulmonary challenge with VACV. Consistent with the mouse data, increased FABP4 and FABP5 expression and enhanced extracellular FFA uptake were also demonstrated in human CD8+ TRM cells in normal and psoriatic skin. These results suggest that FABP4 and FABP5 have a critical role in the maintenance, longevity and function of CD8+ TRM cells, and suggest that CD8+ TRM cells use exogenous FFAs and their oxidative metabolism to persist in tissue and to mediate protective immunity.


Journal of Clinical Investigation | 1985

Low doses of interferon alpha result in more effective clinical natural killer cell activation.

Bruce S. Edwards; J A Merritt; Robert C. Fuhlbrigge; Ernest C. Borden

To define critical parameters concerning interferon (IFN) effects upon natural killer (NK) cells in vivo, we gave cancer patients serial weekly intramuscular injections of purified lymphoblastoid IFN in six doses ranging from 10(5) to 3 X 10(7) U. Dose sequences were determined by randomly allocating patients to one of six levels in a latin square ordering scheme. NK cell stimulation, a threefold peak increase above preinjection levels of cytolysis (P = 0.022), occurred in peripheral mononuclear cells (PMC) sampled 24 h postinjection, of 3 X 10(6) U, but was not detectable at any dose in PMC sampled 7 d postinjection. No blunting occurred in NK cell responsiveness to repeated injection of IFN dosages a second time at or several weeks after study completion. At IFN doses of 3 X 10(6), 10(7), and 3 X 10(7) U, a negative correlation existed between the amount of IFN injected and the average extent of NK cell activation (r = -0.423, P less than 0.05). This contrasted with the progressively increasing response of NK cells to in vitro incubation with increasing concentration of up to 3,000 U/ml of IFN. Overnight culturing of PMC sampled before IFN injections resulted in a mean 1.9-fold increase in cytolytic activity (P = 0.0005) and a mean 53% decrease in variance (P = 0.024) between serial preinjection NK cell activity determinations. Cell separation procedures may, therefore, have resulted in NK cell inactivation, from which overnight culturing permitted recovery. We found that maximal NK cell activation at a low IFN dose, decreasing NK cell responsiveness at higher doses, and the need to culture PMC to efficiently detect NK cell boosting may account for disparities in reported effects of IFN on NK cell function.

Collaboration


Dive into the Robert C. Fuhlbrigge's collaboration.

Top Co-Authors

Avatar

Thomas S. Kupper

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Rachael A. Clark

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Fatma Dedeoglu

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert P. Sundel

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Tian Tian

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter Nigrovic

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sandra L. King

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert Sackstein

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Jiang

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge