Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert C. Grabowski is active.

Publication


Featured researches published by Robert C. Grabowski.


Aquatic Sciences | 2016

A multi-scale hierarchical framework for developing understanding of river behaviour to support river management

Angela M. Gurnell; Massimo Rinaldi; B. Belletti; Simone Bizzi; Bernadette Blamauer; G. Braca; Anthonie D. Buijse; M. Bussettini; B. Camenen; Francesco Comiti; L. Demarchi; D. García de Jalón; M. González del Tánago; Robert C. Grabowski; I. D. M. Gunn; Helmut Habersack; Dimmie Hendriks; Alexander J. Henshaw; Mario Klösch; B. Lastoria; A. Latapie; Paweł Marcinkowski; Vanesa Martínez-Fernández; Erik Mosselman; J. O. Mountford; Laura Nardi; Tomasz Okruszko; Matthew T. O’Hare; M. Palma; C. Percopo

This paper introduces this special issue of Aquatic Sciences. It outlines a multi-scale, hierarchical framework for developing process-based understanding of catchment to reach hydromorphology that can aid design and delivery of sustainable river management solutions. The framework was developed within the REFORM (REstoring rivers FOR effective catchment Management) project, funded by the European Union’s FP7 Programme. Specific aspects of this ‘REFORM framework’ and some applications are presented in other papers in this special issue. The REFORM framework is founded on previous hierarchical frameworks, sixteen examples of which are reviewed. However, the REFORM framework has some particular properties that reflect the European context for which it was developed. The framework delineates regional landscapes into nested spatial units at catchment, landscape unit, segment, reach, geomorphic unit and finer scales. Reaches, regardless of their ‘naturalness’, are assigned to a river type based on valley confinement, planform and bed material. Indicators are quantified at each spatial scale to feed three groups of assessments. First, contemporary indicators at reach and geomorphic unit scales investigate present processes, forms and human pressures within each reach. These feed assessments of present reach hydromorphological function/alteration, including whether the reach is functioning appropriately for its type; riparian corridor function and alteration; and hydromorphological adjustment. Second, indicators at catchment to segment scales investigate water and sediment production and delivery to reaches and how these are affected by human pressures now and in the past. These are used to construct an inventory of changes over space and time. Third, historical reach and geomorphic unit scale indicators are used to construct the trajectory of reach-scale changes. Contemporary reach-scale assessments, space–time inventory, and trajectory of changes are then combined to establish how river reaches of different type, subject to different human pressures, and located in different environmental contexts behave in response to changes at all considered spatial scales. These support forecasts of the likely responses of reaches to future scenarios (e.g., changes in climate, land cover, channel interventions).


Aquatic Sciences | 2016

The use of remote sensing to characterise hydromorphological properties of European rivers

Simone Bizzi; L. Demarchi; Robert C. Grabowski; C. Weissteiner; W. van de Bund

Remote sensing (RS) technology offers unparalleled opportunities to explore river systems using RADAR, multispectral, hyper spectral, and LiDAR data. The accuracy reached by these technologies recently has started to satisfy the spatial and spectral resolutions required to properly analyse the hydromorphological character of river systems at multiple scales. Using the River Hierarchical Framework (RHF) as a reference we describe the state-of-the-art RS technologies that can be implemented to quantify hydromorphological characteristics at each of the spatial scales incorporated in the RHF (i.e. catchment, landscape unit, river segment, river reach, sub-reach—geomorphic and hydraulic units). We also report the results of a survey on RS data availability in EU member states that shows the current potential to derive RHF hydromorphological indicators from high-resolution multispectral images and topographic LiDAR at the national scale across Europe. This paper shows that many of the assessment indicators proposed by the RHF can be derived by different RS sources and existing methodologies, and that EU countries have sufficient RS data at present to already begin their incorporation into hydromorphological assessment and monitoring, as mandated by WFD. With cooperation and planning, RS data can form a fundamental component of hydromorphological assessment and monitoring in the future to help support the effective and sustainable management of rivers, and this would be done most effectively through the establishment of multi-purpose RS acquisition campaigns and the development of shared and standardized hydromorphological RS databases updated regularly through planned resurveyed campaigns.


Journal of Soils and Sediments | 2012

Spatial and temporal variations in the erosion threshold of fine riverbed sediments

Robert C. Grabowski; Geraldene Wharton; Grieg R. Davies; Ian G. Droppo

PurposeLowland chalk streams in the UK are experiencing increased deposition of fine sediment due to changes in land-use practices, channel modifications, and groundwater abstraction. The excessive fine sediment deposits have been linked to benthic habitat degradation, the obstruction of surface–groundwater flow, and the storage of contaminants, such as nutrients and pesticides. While research has been conducted on the provenance, transport, deposition, and storage of fine sediment in chalk streams, none has expressly investigated the erosion of fine sediment deposits.Materials and methodsA year-long field survey was conducted in two reaches of the Frome-Piddle catchment (Dorset, UK) to quantify spatial and temporal variations in the erosion thresholds of surficial fine sediment deposits. Erosion thresholds were measured at randomly located points within areas of sediment accumulation using a cohesive strength meter (CSM). The threshold measurements were paired with sediment cores for analysis of the physical, chemical, and biological properties of the sediment. Spatial and temporal patterns in the erosion thresholds of fine sediment were analyzed using nonparametric statistical tests and visualized with GIS. The sediment properties underlying the variations in erosion thresholds were examined through correlation and linear regression analyses.Results and discussionErosion thresholds varied significantly over space and time within the stream reaches. Erosion thresholds were greater for fine sediment deposits found in the center of the channel than in the margins. Thresholds were highest in September 2008 and declined substantially to a minimum in May 2009, with a small peak in March 2009, indicating an annual cycle in erosion thresholds. Effective particle size was identified statistically as the most important sediment property influencing erosion thresholds and was probably underlying much of the spatial variation within the reaches. None of the measured sediment properties adequately characterized the temporal variation in erosion thresholds, however, the results suggest that biological sediment properties and water geochemistry (i.e., cation content) may play a role.ConclusionsBy identifying significant spatial and temporal variations in erosion thresholds, this study provides valuable information on the stability of fine sediment deposits, and sediment-bound contaminants, in lowland river systems. This is a crucial step in assessing their local environmental impacts and developing models of fine sediment transport for the effective management of catchment sediment budgets and water resources.


Engineering Geology for Society and Territory, volume 3, Proceedings IAEG XII Congress | IAEG XII Congress | 15-19 Sept 2014 | Turín Italia | 2015

Development and application of a multi-scale process-based framework for the hydromorphological assessment of European rivers

Angela M. Gurnell; M. González del Tánago; Massimo Rinaldi; Robert C. Grabowski; Alexander J. Henshaw; B. Belletti

Many current river assessment methods emphasise the river ‘reach’ scale (a fixed length of river of the order of a few hundred meters) and provide a wealth of useful information that characterises the river corridor at the time of survey. However, they also have several limitations when they are used for understanding physical processes and causes of river alteration. A multi-scale, process-based framework is needed, which incorporates reach scale information into a larger spatial and temporal assessment of the controls on reach dynamics, and a process-based interpretation of the contemporary status of reaches, their historical dynamics and their likely future trajectories of adjustment. This paper reports on the early development and application of a multi-scale framework that is applicable to European rivers and is aimed at improving understanding of hydromorphological and ecological processes and their interactions. This ongoing research is part of the EU-funded project REFORM (REstoring rivers FOR effective catchment Management) which has the overall aim to provide a framework for improving the success of hydromorphological restoration measures in a cost-effective manner, targeting the ecological status or potential of rivers.


Science of The Total Environment | 2017

Controls on anastomosis in lowland river systems: Towards process-based solutions to habitat conservation

Paweł Marcinkowski; Robert C. Grabowski; Tomasz Okruszko

Anastomosing rivers were historically common around the world before extensive agricultural and industrial development in river valleys. Few lowland anastomosing rivers remain in temperate zones, and the protection of these river-floodplain systems is an international conservation priority. However, the mechanisms that drive the creation and maintenance of multiple channels, i.e. anabranches, are not well understood, particularly for lowland rivers, making it challenging to identify effective management strategies. This study uses a novel multi-scale, process-based hydro-geomorphological approach to investigate the natural and anthropogenic controls on anastomosis in lowland river reaches. Using a wide range of data (hydrologic, cartographic, remote-sensing, historical), the study (i) quantifies changes in the planform of the River Narew, Poland over the last 100years, (ii) documents changes in the natural and anthropogenic factors that could be driving the geomorphic change, and (iii) develops a conceptual model of the controls of anastomosis. The results show that 110km of anabranches have been lost from the Narew National Park (6810ha), a 42% reduction in total anabranch length since 1900. The rates of anabranch loss have increased as the number of pressures inhibiting anabranch creation and maintenance has multiplied. The cessation of localized water level and channel management (fishing dams, water mills and timber rafting), the loss of traditional floodplain activities (seasonal mowing) and infrastructure construction (embanked roads and an upstream dam) are contributing to low water levels and flows, the deposition of sediment at anabranch inlets, the encroachment of common reed (Phragmites australis), and the eventual loss of anabranches. By identifying the processes driving the loss of anabranches, this study provides transferable insights into the controls of anastomosis in lowland rivers and the management solutions needed to preserve the unique anastomosing river pattern and diverse wet grasslands that are central to the conservation value of lowland floodplains.


Aquatic Sciences | 2016

On the estimation of the bed-material transport and budget along a river segment: application to the Middle Loire River, France

B. Camenen; Robert C. Grabowski; A. Latapie; A Paquier; Luca Solari; S Rodrigues

Sediment load and budgets are a fundamental component of the process-based hydromorphological framework developed by the REFORM project, and are needed to accurately assess the current condition of a river, its sensitivity to change, and its likely future evolutionary trajectory. This paper presents an evaluation of three different methods for estimating both bedload sediment transport and bed-material budget within river channels, using the Middle Loire River as a case study. The first method is based on the stream power concept and does not need any hydraulic calculations. It yields estimates of the sediment transport in the same order of magnitude as measurements but poor results for the bed-material budget in terms of magnitude and tendency. For the second method, hydraulic parameters are computed using the Manning–Strickler equation (or a 1D hydraulic model for steady flow). It provides useful indicators for understanding river dynamics but does not yield significant improvements compared to the first method. The third method uses 1D numerical software for water flow and river bed evolution. It yields the most accurate results for both sediment transport and bed evolution but requires more data and overall more work to construct the model. Guidance is provided on the amount of data required, the competence needed to build the models, and the predictive capability of each of the methods.


Environmental Modelling and Software | 2018

A multiscale statistical method to identify potential areas of hyporheic exchange for river restoration planning

Chiara Magliozzi; Gianpaolo Coro; Robert C. Grabowski; Aaron I. Packman; Stefan Krause

Abstract The hyporheic zone (HZ) is an area of interaction between surface and ground waters present in and around river beds. Bidirectional mixing within the HZ, termed hyporheic exchange flow (HEF), plays significant roles in nutrient transport, organic matter and biogeochemical processing in rivers. The functional importance of the HZ in river ecology and hydrology suggests that river managers should consider the HZ in their planning to help compromised systems recover. However, current river restoration planning tools do not take into account the HZ. This paper describes a novel multiscale, transferable method that combines existing environmental information at different spatial scales to identify areas with potentially significant HEF for use in restoration prioritization and planning. It uses a deductive approach that is suited for data-poor case studies, which is common for most rivers, given the very limited data on the spatial occurrence of areas of hyporheic exchange. Results on nine contrasting European rivers, demonstrate its potential to inform river management.


Earth-Science Reviews | 2011

Erodibility of cohesive sediment: The importance of sediment properties

Robert C. Grabowski; Ian G. Droppo; Geraldene Wharton


Wiley Interdisciplinary Reviews: Water | 2014

Characterizing geomorphological change to support sustainable river restoration and management

Robert C. Grabowski; Nicola Surian; Angela M. Gurnell


River Research and Applications | 2016

A Conceptual Model of Vegetation–hydrogeomorphology Interactions Within River Corridors

Angela M. Gurnell; Dov Jean-François Corenblit; D. García de Jalón; M. González del Tánago; Robert C. Grabowski; Matthew T. O'Hare; M. Szewczyk

Collaboration


Dive into the Robert C. Grabowski's collaboration.

Top Co-Authors

Avatar

Angela M. Gurnell

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geraldene Wharton

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. García de Jalón

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Stefan Krause

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Belletti

University of Florence

View shared research outputs
Researchain Logo
Decentralizing Knowledge