Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert C. Sills is active.

Publication


Featured researches published by Robert C. Sills.


Nature Genetics | 2001

Wildtype Kras2 can inhibit lung carcinogenesis in mice

Zhongqiu Zhang; Yian Wang; Haris G. Vikis; Leisa Johnson; Gongjie Liu; Jie Li; Marshall W. Anderson; Robert C. Sills; Hue-Hua L. Hong; Theodora R. Devereux; Tyler Jacks; Kun-Liang Guan; Ming You

Although the ras genes have long been established as proto-oncogenes, the dominant role of activated ras in cell transformation has been questioned. Previous studies have shown frequent loss of the wildtype Kras2 allele in both mouse and human lung adenocarcinomas. To address the possible tumor suppressor role of wildtype Kras2 in lung tumorigenesis, we have carried out a lung tumor bioassay in heterozygous Kras2-deficient mice. Mice with a heterozygous Kras2 deficiency were highly susceptible to the chemical induction of lung tumors when compared to wildtype mice. Activating Kras2 mutations were detected in all chemically induced lung tumors obtained from both wildtype and heterozygous Kras2-deficient mice. Furthermore, wildtype Kras2 inhibited colony formation and tumor development by transformed NIH/3T3 cells and a mouse lung tumor cell line containing an activated Kras2 allele. Allelic loss of wildtype Kras2 was found in 67% to 100% of chemically induced mouse lung adenocarcinomas that harbor a mutant Kras2 allele. Finally, an inverse correlation between the level of wildtype Kras2 expression and extracellular signal–regulated kinase (ERK) activity was observed in these cells. These data strongly suggest that wildtype Kras2 has tumor suppressor activity and is frequently lost during lung tumor progression.


Toxicologic Pathology | 2002

Quality Review Procedures Necessary for Rodent Pathology Databases and Toxicogenomic Studies: The National Toxicology Program Experience

Gary A. Boorman; Joseph K. Haseman; Michael D. Waters; Jerry F. Hardisty; Robert C. Sills

Accuracy of the pathology data is crucial since rodent studies often provide critical data used for setting human chemical exposure standards. Diagnoses represent a judgment on the expected biological behavior of a lesion and peer review can improve diagnostic accuracy and consistency. With the conduct of 500 2-year rodent studies, the National Toxicology Program (NTP) has refined its process for comprehensive review of the pathology data and diagnoses. We have found that careful judgment can improve and simplify the review, whereas simply applying a set review procedure may not assure study quality. The use of reviewing pathologists and pathology peer review groups is a very effective procedure to increase study quality with minimal time and cost. New genomic technology to assess differential gene expression is being used to predict morphological phenotypes such as necrosis, hyperplasia, and neoplasia. The challenge for pathologists is to provide uniform pathology phenotypes that can be correlated with the gene expression changes. The lessons learned in assuring data quality in standard rodent studies also applies to the emerging field of toxicogenomics.


Toxicologic Pathology | 2013

STP Position Paper Recommended Practices for Sampling and Processing the Nervous System (Brain, Spinal Cord, Nerve, and Eye) during Nonclinical General Toxicity Studies

Brad Bolon; Robert H. Garman; Ingrid D. Pardo; Karl F. Jensen; Robert C. Sills; Aude Roulois; Ann Radovsky; Alys Bradley; Lydia Andrews-Jones; Mark T. Butt; Laura Gumprecht

The Society of Toxicologic Pathology charged a Nervous System Sampling Working Group with devising recommended practices to routinely screen the central nervous system (CNS) and peripheral nervous system (PNS) in Good Laboratory Practice–type nonclinical general toxicity studies. Brains should be weighed and trimmed similarly for all animals in a study. Certain structures should be sampled regularly: caudate/putamen, cerebellum, cerebral cortex, choroid plexus, eye (with optic nerve), hippocampus, hypothalamus, medulla oblongata, midbrain, nerve, olfactory bulb (rodents only), pons, spinal cord, and thalamus. Brain regions may be sampled bilaterally in rodents using 6 to 7 coronal sections, and unilaterally in nonrodents with 6 to 7 coronal hemisections. Spinal cord and nerves should be examined in transverse and longitudinal (or oblique) orientations. Most Working Group members considered immersion fixation in formalin (for CNS or PNS) or a solution containing acetic acid (for eye), paraffin embedding, and initial evaluation limited to hematoxylin and eosin (H&E)-stained sections to be acceptable for routine microscopic evaluation during general toxicity studies; other neurohistological methods may be undertaken if needed to better characterize H&E findings. Initial microscopic analyses should be qualitative and done with foreknowledge of treatments and doses (i.e., “unblinded”). The pathology report should clearly communicate structures that were assessed and methodological details. Since neuropathologic assessment is only one aspect of general toxicity studies, institutions should retain flexibility in customizing their sampling, processing, analytical, and reporting procedures as long as major neural targets are evaluated systematically.


Toxicologic Pathology | 2012

Proliferative and Nonproliferative Lesions of the Rat and Mouse Central and Peripheral Nervous Systems

Wolfgang Kaufmann; Brad Bolon; Alys Bradley; Mark T. Butt; Stephanie Czasch; Robert H. Garman; Catherine George; Sibylle Gröters; Georg Krinke; Peter B. Little; Jenny McKay; Isao Narama; Deepa Rao; Makoto Shibutani; Robert C. Sills

Harmonization of diagnostic nomenclature used in the pathology analysis of tissues from rodent toxicity studies will enhance the comparability and consistency of data sets from different laboratories worldwide. The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of four major societies of toxicologic pathology to develop a globally recognized nomenclature for proliferative and nonproliferative lesions in rodents. This article recommends standardized terms for classifying changes observed in tissues of the mouse and rat central (CNS) and peripheral (PNS) nervous systems. Sources of material include academic, government, and industrial histopathology databases from around the world. Covered lesions include frequent, spontaneous, and aging-related changes as well as principal toxicant-induced findings. Common artifacts that might be confused with genuine lesions are also illustrated. The neural nomenclature presented in this document is also available electronically on the Internet at the goRENI website (http://www.goreni.org/).


Toxicology and Applied Pharmacology | 2003

Expression of potential β-catenin targets, cyclin D1, c-Jun, c-Myc, E-cadherin, and EGFR in chemically induced hepatocellular neoplasms from B6C3F1 mice

Colleen H. Anna; Mari Iida; Robert C. Sills; Theodora R. Devereux

In this study we used liver neoplasms induced by several chemical carcinogens to investigate potential nuclear targets associated with beta-catenin/Wnt signaling and potential membrane-associated beta-catenin binding partners. Strong expression of cyclin D1, in a pattern similar to that observed previously for beta-catenin, was observed by Western analysis for all five hepatoblastomas examined regardless of treatment. Increased expression of cyclin D1 was also detected in 12 of 35 (34%) hepatocellular neoplasms. Ten of 15 tumors (67%) that had mutations in the Catnb gene had upregulation of cyclin D1, while only 2 of 20 tumors (10%) without Catnb mutations had increased cyclin D1 expression. Immunohistochemical analysis confirmed strong expression of cyclin D1 in most nuclei of hepatoblastomas and scattered nuclear staining in hepatocellular tumors that had Catnb mutations. Increased c-Jun expression was observed in 19 of 30 (63%) hepatocellular tumors and all hepatoblastomas, although upregulation was not completely correlated with Catnb mutation. C-Myc expression was not increased in the tumors. Reduced expression of E-cadherin, which interacts with beta-catenin at the membrane, was observed in some tumors, but this did not correlate with Catnb mutation. Expression of the epidermal growth factor receptor, which may have a role in beta-catenin tyrosine phosphorylation, was lower in some tumors than in normal tissue depending on chemical treatment. The results provide evidence that increased expression of cyclin D1 and c-Jun may provide an advantage during tumor progression and in the transition from hepatocellular neoplasms to hepatoblastomas. Moreover, it is likely increased cyclin D1 expression results at least in part from Catnb mutation, beta-catenin accumulation, and increased Wnt signaling.


Radiation Research | 2000

Leukemia and Lymphoma Incidence in Rodents Exposed to Low-Frequency Magnetic Fields

Gary A. Boorman; Charles N. Rafferty; Jerrold M. Ward; Robert C. Sills

Abstract Boorman, G.A., Rafferty, C.N., Ward, J.M. and Sills, R.C. Leukemia and Lymphoma Incidence in Rodents Exposed to Low-Frequency Magnetic Fields. A weak association between residential or occupational exposure to electric and magnetic fields (50/60 Hz fields) and an increased incidence of leukemia has been reported. Numerous animal studies have evaluated the potential association between magnetic-field exposure and leukemia. These include long-term (up to 2½ years) bioassays, initiation/promotion studies, investigations in transgenic models, and tumor growth studies. Exposure to 60 Hz circularly polarized magnetic fields at 1,400 μT for 28 months did not affect lymphoma incidence in mice. The study included over 2000 C57BL/6J mice. In another study, 1000 B6C3F1 mice exposed to 60 Hz magnetic fields up to 1000 μT for 2 years showed no increase in lymphomas. Approximately 400 transgenic Eμ-Pim1 mice exposed to 50 Hz fields up to 1000 μT for up to 18 months had no increased incidence of leukemia. Similarly, Trp53+/− mice and Pim1transgenic mice exposed to 60 Hz magnetic fields for 23 weeks showed no increased incidence of lymphoma. Three studies in F344 rats exposed to 50 or 60 Hz magnetic fields up to 5 mT showed no increased incidence of leukemia. The combined animal bioassay results are nearly uniformly negative for magnetic-field exposures enhancing leukemia and weaken the possible epidemiological association between magnetic-field exposures and leukemia in humans as suggested by epidemiological data.


Toxicologic Pathology | 1999

Chronic Toxicity/Oncogenicity Evaluation of 60 Hz (Power Frequency) Magnetic Fields in F344/N Rats

Gary A. Boorman; David L. McCormick; John C. Findlay; James R. Hailey; James R. Gauger; Tim R. Johnson; Robert M. Kovatch; Robert C. Sills; Joseph K. Haseman

A 2-yr whole-body exposure study was conducted to evaluate the chronic toxicity and possible oncogenicity of 60 Hz (power frequency) magnetic fields in rats. Groups of 100 male and 100 female F344/N rats were exposed continuously to pure, linearly polarized, transient-free 60 Hz magnetic fields at flux densities of 0 Gauss (G) (sham control), 20 milligauss (mG), 2 G, and 10 G; an additional group of 100 male and 100 female F344/N rats received intermittent (1 hr on/1 hr off) exposure to 10 G fields. Mortality patterns, body weight gains throughout the study, and the total incidence and number of malignant and benign tumors in all groups exposed to magnetic fields were similar to those found in sex-matched sham controls. Statistically significant increases in the combined incidence of C-cell adenomas and carcinomas of the thyroid were seen in male rats chronically exposed to 20 mG and 2 G magnetic fields. These increases were not seen in male rats exposed continuously or intermittently to 10 G fields or in female rats at any magnetic field exposure level. No increases in the incidence of neoplasms, which have been identified in epidemiology studies as possible targets of magnetic field action (leukemia, breast cancer, and brain cancer), were found in any group exposed to magnetic fields. There was a decrease in leukemia in male rats exposed to 10 G intermittent fields. The occurrence of C-cell tumors at the 2 lower field intensities in male rats is interpreted as equivocal evidence of carcinogenicity; data from female rats provides no evidence of carcinogenicity in that sex. These data, when considered as a whole, are interpreted as indicating that chronic exposure to pure linearly polarized 60 Hz magnetic fields has little or no effect on cancer development in the F344/N rat.


Toxicologic Pathology | 2004

Applications of Magnetic Resonance Microscopy

Robert R. Maronpot; Robert C. Sills; G. Allan Johnson

Magnetic resonance imaging (MRI) has enjoyed enormous clinical success since the first demonstration of the method more than 30 years ago. An increasing number of pharmaceutical manufacturers seeking new biomarkers for assessing drug efficacy and toxicity are turning to MRI. A specific application of MRI promises to revolutionize pathology for the basic scientist in the same way MRI has forever altered the standard of care in the clinical domain. More specifically, this application is the use of magnetic resonance microscopy (MRM) in conjunction with new staining methodologies that now make MRM routinely available to the widest range of investigators.


Toxicologic Pathology | 2000

Mutations of ras protooncogenes and p53 tumor suppressor gene in cardiac hemangiosarcomas from B6C3F1 mice exposed to 1,3-butadiene for 2 years

Hue-Hua L. Hong; Theodora R. Devereux; Ronald L. Melnick; Cindy R. Moomaw; Gary A. Boorman; Robert C. Sills

1,3-Butadiene is a multisite carcinogen in rodents. Incidences of cardiac hemangiosarcomas were significantly increased in male and female B6C3F1 mice that inhaled 1,3-butadiene (BD) for 2 years. Eleven BD-induced cardiac hemangiosarcomas were examined for genetic alterations in ras protooncogenes and in the p53 tumor suppressor gene. Nine of 11 (82%) BD-induced hemangiosarcomas had K-ras mutations and 5 of 11 (46%) had H-ras mutations. All of the K-ras mutations were G→C transversions (GGC→CGC) at codon 13; this pattern is consistent with reported results in BD-induced lung neoplasms and lymphomas. Both K- ras codon 13 CGC mutations and H-ras codon 61 CGA mutations were detected in 5 of 9 (56%) hemangiosarcomas. The 11 hemangiosarcomas stained positive for p53 protein by immunohistochemistry and were analyzed for p53 mutations using cycle sequencing of polymerase chain reaction (PCR) amplified DNA isolated from paraffin-embedded sections. Mutations in exons 5 to 8 of the p53 gene were identified in 5 of 11 (46%) hemangiosarcomas, and all of these were from the 200- or 625-ppm exposure groups that also had K-ras codon 13 CGC mutations. Our data indicate that K-ras, H- ras, and p53 mutations in these hemangiosarcomas most likely occurred as a result of the genotoxic effects of BD and that these mutations may play a role in the pathogenesis of BD-induced cardiac hemangiosarcomas in the B6C3F1 mouse.


Toxicologic Pathology | 1999

Chronic Toxicity/Oncogenicity Evaluation of 60 Hz (Power Frequency) Magnetic Fields in B6C3F1 Mice

David L. McCormick; Gary A. Boorman; John C. Findlay; James R. Hailey; Tim R. Johnson; James R. Gauger; John Pletcher; Robert C. Sills; Joseph K. Haseman

A 2-yr whole-body exposure study was conducted to evaluate the chronic toxicity and possible oncogenicity of 60 Hz (power frequency) magnetic fields in mice. Groups of 100 male and 100 female B6C3F1 mice were exposed to pure, linearly polarized, transient-free 60 Hz magnetic fields at flux densities of 0 Gauss (G) (sham control), 20 milligauss (mG), 2 G, and 10 G; an additional group of 100 male and 100 female B6C3F1 mice received intermittent (1 hr on/1 hr off) exposure to 10 G fields. A small but statistically significant increase in mortality was observed in male mice exposed continuously to 10 G fields; mortality patterns in all other groups of mice exposed to magnetic fields were comparable to those found in sex-matched sham controls. Body weight gains and the total incidence and number of malignant and benign tumors were similar in all groups. Magnetic field exposure did not increase the incidence of neoplasia in any organ, including those sites (leukemia, breast cancer, and brain cancer) that have been identified in epidemiology studies as possible targets of magnetic field action. A statistically significant decrease in the incidence of malignant lymphoma was observed in female mice exposed continuously to 10 G fields, and statistically significant decreases in the incidence of lung tumors were seen in both sexes exposed continuously to 2 G fields. These data do not support the hypothesis that chronic exposure to pure, linearly polarized 60 Hz magnetic fields is a significant risk factor for neoplastic development in mice.

Collaboration


Dive into the Robert C. Sills's collaboration.

Top Co-Authors

Avatar

Theodora R. Devereux

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gary A. Boorman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hue-Hua L. Hong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arun R. Pandiri

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel L. Morgan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joseph K. Haseman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shyamal D. Peddada

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thai Vu Ton

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thai-Vu T. Ton

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge