Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Carlisle is active.

Publication


Featured researches published by Robert Carlisle.


Blood | 2009

Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1

Robert Carlisle; Ying Di; Anna M. Cerny; Andreas F.-P. Sonnen; Robert B. Sim; Nicola K. Green; Vladimir Subr; Karel Ulbrich; Robert J. C. Gilbert; Kerry D. Fisher; Robert W. Finberg; Leonard W. Seymour

Type 5 adenovirus (Ad5) is a human pathogen that has been widely developed for therapeutic uses, with only limited success to date. We report here the novel finding that human erythrocytes present Coxsackie virus-adenovirus receptor (CAR) providing an Ad5 sequestration mechanism that protects against systemic infection. Interestingly, erythrocytes from neither mice nor rhesus macaques present CAR. Excess Ad5 fiber protein or anti-CAR antibody inhibits the binding of Ad5 to human erythrocytes and cryo-electron microscopy shows attachment via the fiber protein of Ad5, leading to close juxtaposition with the erythrocyte membrane. Human, but not murine, erythrocytes also present complement receptor (CR1), which binds Ad5 in the presence of antibodies and complement. Transplantation of human erythrocytes into nonobese diabetic/severe combined immunodeficiency mice extends blood circulation of intravenous Ad5 but decreases its extravasation into human xenograft tumors. Ad5 also shows extended circulation in transgenic mice presenting CAR on their erythrocytes, although it clears rapidly in transgenic mice presenting erythrocyte CR1. Hepatic infection is inhibited in both transgenic models. Erythrocytes may therefore restrict Ad5 infection (natural and therapeutic) in humans, independent of antibody status, presenting a formidable challenge to Ad5 therapeutics. “Stealthing” of Ad5 using hydrophilic polymers may enable circumvention of these natural virus traps.


Gene Therapy | 2001

Triggered intracellular activation of disulfide crosslinked polyelectrolyte gene delivery complexes with extended systemic circulation in vivo.

D Oupický; Robert Carlisle; Len Seymour

We have developed polyelectrolyte gene delivery vectors that display good extracellular stability and are activated intracellularly to permit transgene expression. The strategy comprises covalent crosslinking of primary amines in poly-L-lysine/DNA complexes with a crosslinking agent that can later be cleaved by reduction. Crosslinked complexes maintained the same size and surface charge but showed increased stability against polyelectrolyte exchange with poly-L-aspartic acid. Surface modification with polyethyleneglycol improved solubility and masked their positive surface charge. Crosslinked complexes showed 10-fold increased plasma circulation following intravenous administration to Balb/c mice. In the absence of chloroquine, the levels of transgene expression in B16F10 murine melanoma cells were similar for crosslinked and non-crosslinked complexes, however, chloroquine selectively potentiated transgene expression by the non-crosslinked complexes. Cellular uptake of the complexes was the same, irrespective of crosslinking. Following microinjection into the cytoplasm of Xenopus oocytes, or the cytoplasm or nucleus of Rat-1 fibroblasts, crosslinked complexes mediated the same transgene expression as non-crosslinked complexes, indicating crosslinked complexes are rapidly reduced and activated intracellularly. We therefore hypothesize that the lower in vitro transfection activity of crosslinked complexes in the presence of chloroquine is due to reduced transfer from endosome to cytoplasm, mainly due to increased stability against destabilization by chloroquine. The extended systemic circulation together with triggered intracellular activation makes these complexes a promising system for targeted gene delivery in vivo.


Journal of Gene Medicine | 2004

Polymer‐coated polyethylenimine/DNA complexes designed for triggered activation by intracellular reduction

Robert Carlisle; Tomáš Etrych; Simon S. Briggs; Jon A. Preece; Karel Ulbrich; Leonard W. Seymour

Site‐specific gene delivery requires vectors that combine stability in the delivery phase with substantial biological activity within target cells. The use of biological trigger mechanisms provides one promising means to achieve this, and here we report a transfection trigger mechanism based on intracellular reduction.


Expert Opinion on Drug Delivery | 2012

Ultrasound-enhanced drug delivery for cancer

Steven Mo; Constantin C. Coussios; Len Seymour; Robert Carlisle

Introduction: Ultrasound, which has traditionally been used as a diagnostic tool, is increasingly being used in non-invasive therapy and drug delivery. Areas covered: Of particular interest to this review is the rapidly accumulating evidence that ultrasound may have a key role to play both in improving the targeting and the efficacy of drug delivery for cancer. Currently available ultrasound-triggerable vehicles are first described, with particular reference to the ultrasonic mechanism that can activate release and the suitability of the size range of the vehicle used for drug delivery. Further mechanical and thermal effects of ultrasound that can enhance extravasation and drug distribution following release are then critically reviewed. Expert opinion: Acoustic cavitation is found to play a potentially key role both in achieving targeted drug release and enhanced extravasation at modest pressure amplitudes and acoustic energies, whilst simultaneously enabling real-time monitoring of the drug delivery process. The next challenge in ultrasound-enhanced drug delivery will thus be to develop a new generation of drug-carrying nanoparticles which are of the right size range for delivery to tumours, yet still capable of achieving initiation of cavitation activity and drug release at modest acoustic pressures and energies that have no safety implications for the patient.


Journal of Controlled Release | 2009

Coating of adenovirus type 5 with polymers containing quaternary amines prevents binding to blood components.

Vladimir Subr; Libor Kostka; Tom Selby-Milic; Kerry D. Fisher; Karel Ulbrich; Leonard W. Seymour; Robert Carlisle

Adenovirus type 5 (Ad5) gene therapy vectors require protection against antibodies, complement proteins and blood cells if they are to be delivered intravenously to treat metastatic disease. Such protection can be achieved by chemically modifying Ad5 with polymers based on hydrophilic HPMA. Here, such polymers were designed to include side chains bearing reactive carbonyl thiazolidine-2-thione groups (TTs) to covalently modify available amino groups of the lysine residues in the Ad5 capsid. Furthermore, the inclusion of side chains bearing positively charged quaternary ammonium groups (QAs) was designed to improve electrostatic interaction of the polymers with negatively charged Ad5 hexon protein. Finally, to enable triggered uncoating and reactivation of the Ad5, either the TTs or both the TTs and the QAs were linked to polymer backbone via reductively degradable disulfide bonds. SDS-PAGE demonstrated that these polymers covalently modified Ad5 capsid proteins in a reduction reversible manner. In infection studies, polymers containing QAs prevented binding of coagulation factor X to Ad5. Furthermore, the antibody and complement mediated binding of Ad5 to erythrocytes was reduced by such polymers (>95% without polymer, 25% following coating). These data indicate that coating Ad5 therapeutics with such polymers will improve blood circulation half-life and deposition at disease sites.


Journal of the National Cancer Institute | 2013

Enhanced Tumor Uptake and Penetration of Virotherapy Using Polymer Stealthing and Focused Ultrasound

Robert Carlisle; James J. Choi; Miriam Bazan-Peregrino; Richard Laga; Vladimir Subr; Libor Kostka; Karel Ulbrich; Constantin C. Coussios; Leonard W. Seymour

Background Oncolytic viruses are among the most powerful and selective cancer therapeutics under development and are showing robust activity in clinical trials, particularly when administered directly into tumor nodules. However, their intravenous administration to treat metastatic disease has been stymied by unfavorable pharmacokinetics and inefficient accumulation in and penetration through tumors. Methods Adenovirus (Ad) was “stealthed” with a new N-(2-hydroxypropyl)methacrylamide polymer, and circulation kinetics were characterized in Balb/C SCID mice (n = 8 per group) bearing human ZR-75-1 xenograft tumors. Then, to noninvasively increase extravasation of the circulating polymer-coated Ad into the tumor, it was coinjected with gas microbubbles and the tumor was exposed to 0.5 MHz focused ultrasound at peak rarefactional pressure of 1.2MPa. These ultrasound exposure conditions were designed to trigger inertial cavitation, an acoustic phenomenon that produces shock waves and can be remotely monitored in real-time. Groups were compared with Student t test or one-way analysis of variance with Tukey correction where groups were greater than two. All statistical tests were two-sided. Results Polymer-coating of Ad reduced hepatic sequestration, infection (>8000-fold; P < .001), and toxicity and improved circulation half-life (>50-fold; P = .001). Combination of polymer-coated Ad, gas bubbles, and focused ultrasound enhanced tumor infection >30-fold; (4×106 photons/sec/cm2; standard deviation = 3×106 with ultrasound vs 1.3×105; standard deviation = 1×105 without ultrasound; P = .03) and penetration, enabling kill of cells more than 100 microns from the nearest blood vessel. This led to substantial and statistically significant retardation of tumor growth and increased survival. Conclusions Combining drug stealthing and ultrasound-induced cavitation may ultimately enhance the efficacy of a range of powerful therapeutics, thereby improving the treatment of metastatic cancer.


Journal of Gene Medicine | 2008

Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera.

Robert Carlisle; Reuben Benjamin; Simon S. Briggs; Stephanie G. Sumner-Jones; Jenny McIntosh; Deborah R. Gill; Sc Hyde; Amit C. Nathwani; Vladimir Subr; Karel Ulbrich; Leonard W. Seymour; Kerry D. Fisher

Copolymers based on poly‐[N‐(2‐hydroxypropyl) methacrylamide] (HPMA) have been used previously to enable targeted delivery of adenovirus. Here we demonstrate polymer‐coating techniques can also be used to modify and retarget adeno‐associated virus (AAV) types 5 and 8.


Small | 2015

Ultrasound‐Propelled Nanocups for Drug Delivery

James J. Kwan; Rachel Myers; Christian Coviello; Susan Graham; Apurva Shah; Eleanor Stride; Robert Carlisle; Constantin C. Coussios

Ultrasound-induced bubble activity (cavitation) has been recently shown to actively transport and improve the distribution of therapeutic agents in tumors. However, existing cavitation-promoting agents are micron-sized and cannot sustain cavitation activity over prolonged time periods because they are rapidly destroyed upon ultrasound exposure. A novel ultrasound-responsive single-cavity polymeric nanoparticle (nanocup) capable of trapping and stabilizing gas against dissolution in the bloodstream is reported. Upon ultrasound exposure at frequencies and intensities achievable with existing diagnostic and therapeutic systems, nanocups initiate and sustain readily detectable cavitation activity for at least four times longer than existing microbubble constructs in an in vivo tumor model. As a proof-of-concept of their ability to enhance the delivery of unmodified therapeutics, intravenously injected nanocups are also found to improve the distribution of a freely circulating IgG mouse antibody when the tumor is exposed to ultrasound. Quantification of the delivery distance and concentration of both the nanocups and coadministered model therapeutic in an in vitro flow phantom shows that the ultrasound-propelled nanocups travel further than the model therapeutic, which is itself delivered to hundreds of microns from the vessel wall. Thus nanocups offer considerable potential for enhanced drug delivery and treatment monitoring in oncological and other biomedical applications.


Journal of Controlled Release | 2013

Cavitation-enhanced delivery of a replicating oncolytic adenovirus to tumors using focused ultrasound.

Miriam Bazan-Peregrino; Bassel Rifai; Robert Carlisle; James J. Choi; Costas D. Arvanitis; Leonard W. Seymour; Constantin C. Coussios

Oncolytic viruses (OV) and ultrasound-enhanced drug delivery are powerful novel technologies. OV selectively self-amplify and kill cancer cells but their clinical use has been restricted by limited delivery from the bloodstream into the tumor. Ultrasound has been previously exploited for targeted release of OV in vivo, but its use to induce cavitation, microbubble oscillations, for enhanced OV tumor extravasation and delivery has not been previously reported. By identifying and optimizing the underlying physical mechanism, this work demonstrates that focused ultrasound significantly enhances the delivery and biodistribution of systemically administered OV co-injected with microbubbles. Up to a fiftyfold increase in tumor transgene expression was achieved, without any observable tissue damage. Ultrasound exposure parameters were optimized as a function of tumor reperfusion time to sustain inertial cavitation, a type of microbubble activity, throughout the exposure. Passive detection of acoustic emissions during treatment confirmed inertial cavitation as the mechanism responsible for enhanced delivery and enabled real-time monitoring of successful viral delivery.


Human Gene Therapy | 2008

Comparison of Molecular Strategies for Breast Cancer Virotherapy Using Oncolytic Adenovirus

Miriam Bazan-Peregrino; Robert Carlisle; R Hernandez-Alcoceba; R Iggo; K Homicsko; Kerry D. Fisher; Gunnel Halldén; Vivien Mautner; Y Shen; Len Seymour

Oncolytic viruses are regulated by the tumor phenotype to replicate and lyse cancer cells selectively. To identify optimal strategies for breast cancer we compared five adenoviruses with distinct regulatory mechanisms: Ad-dl922-947 (targets G1-S checkpoint); Ad-Onyx-015 and Ad-Onyx-017 (target p53/mRNA export); Ad-vKH1 (targets Wnt pathway), and AdEHE2F (targets estrogen receptor/G1-S checkpoint/hypoxic signaling). The quantity of virus required to kill 50% of breast cancer cells after 6 days (EC(50), plaque-forming units per cell) was measured. The most potent virus was Ad-dl922-947 (EC(50), 0.01-5.4 in SkBr3, MDA-231, MDA-468, MCF7, and ZR75.1 cells), followed by wild-type (Ad-WT; EC(50), 0.3-5.5) and AdEHE2F (EC(50), 1.4-3.9). Ad-vKH1 (EC(50), 7.2-72.1), Ad-Onyx-017 (EC(50), 8.4-167), and Ad-Onyx-015 (EC(50), 17.7-377) showed less activity. Most viruses showed limited cytotoxicity in normal human cells, including breast epithelium MCF10A (EC(50), >722) and fibroblasts (EC(50), >192) and only moderate cytotoxicity in normal microvascular endothelial cells (HMVECs; EC(50), 42.8-149), except Ad-dl922-947, which was active in HMVECs (EC(50), 1.6). After injection into MDA-231 xenografts, Ad-WT, AdEHE2F, and Ad-dl922-947 showed replication, assessed by hexon staining and quantitative polymerase chain reaction measurement of viral DNA, and significantly inhibited tumor growth, leading to extended survival. After intravenous injection Ad-dl922-947 showed DNA replication (233% of the injected dose was measured in liver after 3 days) whereas AdEHE2F did not. Overall, AdEHE2F showed the best combination of low toxicity in normal cells and high activity in breast cancer in vitro and in vivo, suggesting that molecular targeting using estrogen response elements, hypoxia response elements, and a dysregulated G1-S checkpoint is a promising strategy for virotherapy of breast cancer.

Collaboration


Dive into the Robert Carlisle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karel Ulbrich

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge