Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Chunhua Zhao is active.

Publication


Featured researches published by Robert Chunhua Zhao.


Cell Stem Cell | 2008

Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide

Guangwen Ren; Liying Zhang; Xin Zhao; Guangwu Xu; Yingyu Zhang; Arthur I. Roberts; Robert Chunhua Zhao; Yufang Shi

Mesenchymal stem cells (MSCs) can become potently immunosuppressive through unknown mechanisms. We found that the immunosuppressive function of MSCs is elicited by IFNgamma and the concomitant presence of any of three other proinflammatory cytokines, TNFalpha, IL-1alpha, or IL-1beta. These cytokine combinations provoke the expression of high levels of several chemokines and inducible nitric oxide synthase (iNOS) by MSCs. Chemokines drive T cell migration into proximity with MSCs, where T cell responsiveness is suppressed by nitric oxide (NO). This cytokine-induced immunosuppression was absent in MSCs derived from iNOS(-/-) or IFNgammaR1(-/-) mice. Blockade of chemokine receptors also abolished the immunosuppression. Administration of wild-type MSCs, but not IFNgammaR1(-/-) or iNOS(-/-) MSCs, prevented graft-versus-host disease in mice, an effect reversed by anti-IFNgamma or iNOS inhibitors. Wild-type MSCs also inhibited delayed-type hypersensitivity, while iNOS(-/-) MSCs aggravated it. Therefore, proinflammatory cytokines are required to induce immunosuppression by MSCs through the concerted action of chemokines and NO.


Stem Cells and Development | 2004

Effects of Mesenchymal Stem Cells on Differentiation, Maturation, and Function of Human Monocyte-Derived Dendritic Cells

Wei Ge; Changhong Li; Shengguo You; Lianming Liao; Qin Han; Weimin Deng; Robert Chunhua Zhao

Mesenchymal stem cells (MSCs) reportedly inhibit the mixed lymphocyte reaction. Whether this effect is mediated by dendritic cells (DCs) is still unknown. In this study, we used an in vitro model to observe the effects of MSCs and their supernatants on the development of monocyte-derived DCs. Phenotypes and the endocytosic ability of harvested DCs were determined by flow cytometry; interleukin 12 (IL-12) secreted by DCs was evaluated by enzyme-linked immunosorbent assay (ELISA); and the antigen-presenting function of DCs was evaluated by MLR. Our results show that MSCs inhibit the up-regulation of CD1a, CD40, CD80, CD86, and HLA-DR during DC differentiation and prevent an increase of CD40, CD86, and CD83 expression during DC maturation. MSCs supernatants had no effect on DCs differentiation, but they inhibited the up-regulation of CD83 during maturation. Both MSCs and their supernatants interfered with endocytosis of DCs, decreased their capacity to secret IL-12 and activate alloreactive T cells. Thus, effects of MSCs on DCs contribute to immunoregulation and development.


Journal of Hematology & Oncology | 2012

Clinical applications of mesenchymal stem cells

Shihua Wang; Xuebin Qu; Robert Chunhua Zhao

Mesenchymal stem cells (MSC) have generated a great amount of enthusiasm over the past decade as a novel therapeutic paradigm for a variety of diseases. Currently, MSC based clinical trials have been conducted for at least 12 kinds of pathological conditions, with many completed trials demonstrating the safety and efficacy. This review provides an overview of the recent clinical findings related to MSC therapeutic effects. Roles of MSCs in clinical trials conducted to treat graft-versus-host-disease (GVHD) and cardiovascular diseases are highlighted. Clinical application of MSC are mainly attributed to their important four biological properties- the ability to home to sites of inflammation following tissue injury when injected intravenously; to differentiate into various cell types; to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation and to perform immunomodulatory functions. Here, we will discuss these four properties. Moreover, the issues surrounding clinical grade MSCs and principles for MSC therapeutic approaches are also addressed on the transition of MSCs therapy from bench side to bedside.


Cell Research | 2008

Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model

Ling Qiao; Zhili Xu; Tiejun Zhao; Zhigang Zhao; Mingxia Shi; Robert Chunhua Zhao; Lihong Ye; Xiaodong Zhang

Human mesenchymal stem cells (hMSCs) can home to tumor sites and inhibit the growth of tumor cells. Little is known about the underlying molecular mechanisms that link hMSCs to the targeted inhibition of tumor cells. In this study, we investigated the effects of hMSCs on two human hepatoma cell lines (H7402 and HepG2) using an animal transplantation model, a co-culture system and conditioned media from hMSCs. Animal transplantation studies showed that the latent time for tumor formation was prolonged and that the tumor size was smaller when SCID mice were injected with H7402 cells and an equal number of Z3 hMSCs. When co-cultured with Z3 cells, H7402 cell proliferation decreased, apoptosis increased, and the expression of Bcl-2, c-Myc, proliferating cell nuclear antigen (PCNA) and survivin was downregulated. After treatment with conditioned media derived from Z3 hMSC cultures, H4702 cells showed decreased colony-forming ability and decreased proliferation. Immunoblot analysis showed that β-catenin, Bcl-2, c-Myc, PCNA and survivin expression was downregulated in H7402 and HepG2 cells. Taken together, our findings demonstrate that hMSCs inhibit the malignant phenotypes of the H7402 and HepG2 human liver cancer cell lines, which include proliferation, colony-forming ability and oncogene expression both in vitro and in vivo. Furthermore, our studies provide evidence that the Wnt signaling pathway may have a role in hMSC-mediated targeting and tumor cell inhibition.


Molecular and Cellular Neuroscience | 2003

Intraocular elevation of cyclic AMP potentiates ciliary neurotrophic factor-induced regeneration of adult rat retinal ganglion cell axons.

Qi Cui; Henry K. Yip; Robert Chunhua Zhao; Kf So; Alan R. Harvey

In vitro, cyclic AMP (cAMP) elevation alters neuronal responsiveness to diffusible growth factors and myelin-associated inhibitory molecules. Here we used an established in vivo model of adult central nervous system injury to investigate the effects of elevated cAMP on neuronal survival and axonal regeneration. We studied the effects of intraocular injections of neurotrophic factors and/or a cAMP analogue (CPT-cAMP) on the regeneration of axotomized rat retinal ganglion cell (RGC) axons into peripheral nerve autografts. Elevation of cAMP alone did not significantly increase RGC survival or the number of regenerating RGCs. Ciliary neurotrophic factor increased RGC viability and axonal regrowth, the latter effect substantially enhanced by coapplication with CPT-cAMP. Under these conditions over 60% of surviving RGCs regenerated their axons. Neurotrophin-4/5 injections also increased RGC viability, but there was reduced long-distance axonal regrowth into grafts, an effect partially ameliorated by cAMP elevation. Thus, cAMP can act cooperatively with appropriate neurotrophic factors to promote axonal regeneration in the injured adult mammalian central nervous system.


Stem Cells | 2010

Concise review: bone marrow-derived stem/progenitor cells in cutaneous repair and regeneration.

Yaojiong Wu; Robert Chunhua Zhao; Edward E. Tredget

Our understanding of the role of bone marrow (BM)‐derived cells in cutaneous homeostasis and wound healing had long been limited to the contribution of inflammatory cells. Recent studies, however, suggest that the BM contributes a significant proportion of noninflammatory cells to the skin, which are present primarily in the dermis in fibroblast‐like morphology and in the epidermis in a keratinocyte phenotype; and the number of these BM‐derived cells increases markedly after wounding. More recently, several studies indicate that mesenchymal stem cells derived from the BM could significantly impact wound healing in diabetic and nondiabetic animals, through cell differentiation and the release of paracrine factors, implying a profound therapeutic potential. This review discusses the most recent understanding of the contribution of BM‐derived noninflammatory cells to cutaneous homeostasis and wound healing. STEM CELLS 2010;28:905–915


Blood | 2009

Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2–dependent regulatory dendritic cell population

Bin Zhang; Rui Liu; Dan Shi; Xingxia Liu; Yuan Chen; Xiaowei Dou; Xishan Zhu; Chunhua Lu; Wei Liang; Lianming Liao; Martin Zenke; Robert Chunhua Zhao

Mesenchymal stem cells (MSCs), in addition to their multilineage differentiation, exert immunomodulatory effects on immune cells, even dendritic cells (DCs). However, whether they influence the destiny of full mature DCs (maDCs) remains controversial. Here we report that MSCs vigorously promote proliferation of maDCs, significantly reduce their expression of Ia, CD11c, CD80, CD86, and CD40 while increasing CD11b expression. Interestingly, though these phenotypes clearly suggest their skew to immature status, bacterial lipopolysaccharide (LPS) stimulation could not reverse this trend. Moreover, high endocytosic capacity, low immunogenicity, and strong immunoregulatory function of MSC-treated maDCs (MSC-DCs) were also observed. Furthermore we found that MSCs, partly via cell-cell contact, drive maDCs to differentiate into a novel Jagged-2-dependent regulatory DC population and escape their apoptotic fate. These results further support the role of MSCs in preventing rejection in organ transplantation and treatment of autoimmune disease.


Journal of Clinical Investigation | 2010

Mammalian target of rapamycin regulates murine and human cell differentiation through STAT3/p63/Jagged/Notch cascade

Jianhui Ma; Yan Meng; David J. Kwiatkowski; Xinxin Chen; Haiyong Peng; Qian Sun; Xiaojun Zha; Fang Wang; Ying Wang; Yanling Jing; Shu Zhang; Rongrong Chen; Lianmei Wang; Erxi Wu; Guifang Cai; Izabela Malinowska-Kolodziej; Qi Liao; Yuqin Liu; Yi Zhao; Qiang Sun; Kai-Feng Xu; Jianwu Dai; Jiahuai Han; Lizi Wu; Robert Chunhua Zhao; Huangxuan Shen; Hongbing Zhang

The receptor tyrosine kinase/PI3K/AKT/mammalian target of rapamycin (RTK/PI3K/AKT/mTOR) pathway is frequently altered in cancer, but the underlying mechanism leading to tumorigenesis by activated mTOR remains less clear. Here we show that mTOR is a positive regulator of Notch signaling in mouse and human cells, acting through induction of the STAT3/p63/Jagged signaling cascade. Furthermore, in response to differential cues from mTOR, we found that Notch served as a molecular switch to shift the balance between cell proliferation and differentiation. We determined that hyperactive mTOR signaling impaired cell differentiation of murine embryonic fibroblasts via potentiation of Notch signaling. Elevated mTOR signaling strongly correlated with enhanced Notch signaling in poorly differentiated but not in well-differentiated human breast cancers. Both human lung lymphangioleiomyomatosis (LAM) and mouse kidney tumors with hyperactive mTOR due to tumor suppressor TSC1 or TSC2 deficiency exhibited enhanced STAT3/p63/Notch signaling. Furthermore, tumorigenic potential of cells with uncontrolled mTOR signaling was suppressed by Notch inhibition. Our data therefore suggest that perturbation of cell differentiation by augmented Notch signaling might be responsible for the underdifferentiated phenotype displayed by certain tumors with an aberrantly activated RTK/PI3K/AKT/mTOR pathway. Additionally, the STAT3/p63/Notch axis may be a useful target for the treatment of cancers exhibiting hyperactive mTOR signaling.


Trends in Biotechnology | 2008

Profiling microRNA expression with microarrays

James Q. Yin; Robert Chunhua Zhao; Kevin V. Morris

The discovery of several types of small RNAs (sRNAs) has led to a steady increase in available RNA databases. Many of these sRNAs remain to be validated and functionally characterized. Recent advances in microRNA (miRNA)-expression profiling of different tissues, stages of development and physiological or pathological states are beginning to be explored using several technological approaches. In this review, these recent advances in miRNA microarray technology and their applications, particularly in basic research and clinical diagnosis, will be summarized and discussed. The methods for miRNA enrichment and probe design and labeling will also be discussed with an emphasis on evaluation of predicted miRNA sequences, analysis of miRNA expression and exploration of the potential roles of miRNA sequences in the regulation of stem cell differentiation and tissue- and time-specific profiling patterns of their target genes.


Brain Research | 2011

Transplantation of human bone marrow-derived mesenchymal stem cells promotes behavioral recovery and endogenous neurogenesis after cerebral ischemia in rats

Xinjie Bao; Junji Wei; Ming Feng; Shan Lu; Guilin Li; Wanchen Dou; Wenbin Ma; Sihai Ma; Yihua An; Chuan Qin; Robert Chunhua Zhao; Renzhi Wang

Mesenchymal stem cells (MSCs) have been successfully used for the treatment of experimental stroke. However, the neurorestorative mechanisms by which MSCs improve neurological functional recovery are not fully understood. Endogenous cell proliferation in the subventricular zone (SVZ) after stroke is well known, but most of newly formed cells underwent apoptosis. In the present study, we tested the hypothesis that neurotrophic factors secreted by human bone marrow-derived MSCs (hBMSCs) promote endogenous neurogenesis, reduce apoptosis, and improve functional recovery. Adult rats subjected to 2-h middle cerebral artery occlusion (MCAO) were transplanted with hBMSCs or saline into the ipsilateral brain parenchyma at 3days after ischemia. There was a significant recovery of behavior in the hBMSCs-treated rats beginning at 14days after MCAO compared with the control animals. Higher levels of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF) were detected in the hBMSCs-treated rat brain than the control. Human BMSCs treatment also enhanced endogenous cell proliferation both in the SVZ and in the subgranular zone (SGZ) of the hippocampus. In addition, more neuronal progenitor cells migrated from the SVZ to the ischemic boundary zone (IBZ) and differentiated into mature neurons with less apoptosis in rats treated with hBMSCs. Overall, these data suggest an essential role for hBMSCs in promoting endogenous neurogenesis, protecting newly formed cells, and improving functional recovery after ischemia in rats.

Collaboration


Dive into the Robert Chunhua Zhao's collaboration.

Top Co-Authors

Avatar

Qin Han

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Jing Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Lianming Liao

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Shihua Wang

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Zhao Sun

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongling Li

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

Baijun Fang

Academy of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Chunjing Bian

Peking Union Medical College Hospital

View shared research outputs
Top Co-Authors

Avatar

Bin Chen

Peking Union Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge