Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert D. Burke is active.

Publication


Featured researches published by Robert D. Burke.


Developmental Biology | 1985

The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus

Allan W. Gibson; Robert D. Burke

A monoclonal antibody (SP1/20.3.1) that recognizes a cell surface epitope expressed by pigment cells in the pluteus larva of Strongylocentrotus purpuratus has been produced. Using indirect immunofluorescence, the epitope is first detected in nonpigmented cells of the vegetal plate after primary mesenchyme ingression. Between the beginning of gastrulation, and when the archenteron is one-third the distance across the blastocoel, SP1/20.3.1-positive cells are free within the blastocoel, at the tip of the archenteron, and dispersed within the blastoderm. Cells at the tip of the archenteron, and mesenchyme near the tip in later stages of gastrulation (secondary mesenchyme), do not express the SP1/20.3.1 antigen. By the completion of gastrulation all SP1/20.3.1-positive cells are dispersed throughout the epidermis. It has been concluded that in S. purpuratus pigment cell precursors are released from the vegetal plate during the initial phase of gastrulation. The cells migrate first to the vegetal ectoderm, and subsequently disperse throughout the ectoderm and develop pigment granules.


Evolution & Development | 2004

Divergent patterns of neural development in larval echinoids and asteroids

Yoko Nakajima; Hiroyuki Kaneko; Greg Murray; Robert D. Burke

Summary The development and organization of the nervous systems of echinoderm larvae are incompletely described. We describe the development and organization of the larval nervous systems of Strongylocentrotus purpuratus and Asterina pectinifera using a novel antibody, 1E11, that appears to be neuron specific. In the early pluteus, the antibody reveals all known neural structures: apical ganglion, oral ganglia, lateral ganglia, and an array of neurons and neurites in the ciliary band, the esophagus, and the intestine. The antibody also reveals several novel features, such as neurites that extend to the posterior end of the larva and additional neurons in the apical ganglion. Similarly, in asteroid larvae the antibody binds to all known neural structures and identifies novel features, including large numbers of neurons in the ciliary bands, a network of neurites under the oral epidermis, cell bodies in the esophagus, and a network of neurites in the intestine. The 1E11 antigen is expressed during gastrulation and can be used to trace the ontogenies of the nervous systems. In S. purpuratus, a small number of neuroblasts arise in the oral ectoderm in late gastrulae. The cells are adjacent to the presumptive ciliary bands, where they project neurites with growth cone‐like endings that interconnect the neurons. In A. pectinifera, a large number of neuroblasts appear scattered throughout the ectoderm of gastrulae. The cells aggregate in the developing ciliary bands and then project neurites under the oral epidermis. Although there are several shared features of the larval nervous systems of echinoids and asteroids, the patterns of development reveal fundamental differences in neural ontogeny.


Science | 1984

Pheromonal Control of Metamorphosis in the Pacific Sand Dollar, Dendraster excentricus

Robert D. Burke

Competent larvae are induced to undergo metamorphosis by sand from a sand dollar bed or an aqueous extract of the sand. Gel permeation chromatography and high-performance liquid chromatography of the extract yielded a 980-dalton peptide that will induce metamorphosis between 10-6 and 10-5 molar. Extracts of whole adults and gonads were also able to induce metamorphosis, and adults can condition substrates to induce metamorphosis. Therefore, the initiation of metamorphosis in Dendraster excentricus is controlled by a pheromone released by adult sand dollars.


Developmental Biology | 1991

Cell movements during the initial phase of gastrulation in the sea urchin embryo

Robert D. Burke; Robert L. Myers; Tracy L. Sexton; Craig Jackson

The morphogenetic processes responsible for the initial phase of gastrulation in sea urchin embryos are not known. Here we report observations of the size and position of clones of cells derived from horseradish peroxidase (HRP)-injected mesomeres and macromeres. The displacement of these clones during the initial phase of gastrulation suggests that involution is a mechanism involved in primary invagination. Experiments with embryos marked with vital dyes indicate that movements occur only during a brief phase coincident with the invagination of the vegetal plate. Counts of cells derived from HRP-injected mesomeres and macromeres suggest it unlikely that localized growth in the vegetal plate is involved in gastrulation. An analysis of changes in cell shape during the initial phase of gastrulation indicates that there is a stage-dependent shift from cells being columnar to having their apices skewed toward the vegetal plate and an increase in the proportion of cells having basal processes during gastrulation. When embryos are grown in the presence of monoclonal antibodies to the apical lamina or monovalent fragments of these antibodies, the initial phase of gastrulation is delayed and they form partial exogastrulae. Analysis of embryos marked with HRP indicate that the antibody treatments interfere with the cellular movements observed in untreated embryos. We conclude that directed movements of cells within the blastoderm, probably employing tractoring on components of the hyaline layer, cause the buckling of the vegetal plate and displacement of presumptive endoderm cells seen during the initial phase of gastrulation.


Cell and Tissue Research | 1987

Development of the nervous system of the pluteus larva of Strongylocentrotus droebachiensis

Brent W. Bisgrove; Robert D. Burke

SummaryDevelopment of the nervous system of the pluteus larva of Strongylocentrotus droebachiensis was investigated using indirect immunofluorescence with antibodies against dopamine, GABA, and serotonin, and glyoxylic acid-induced fluorescence of catecholamines. Serotonergic cells first appear in full gastrulae; dopaminergic and GABAergic cells are present in early four-arm plutei. The number of neurons and the complexity of the nervous system increases through development of the pluteus. In the pluteus the dopaminergic component of the nervous system includes a ganglion in the lower lip of the mouth and a pair of ganglia at the base of the post-oral arms which extend axons along the base of the circumoral ciliary band. The distribution of cells visualized by glyoxylic acid-induced fluorescence is similar to that of dopaminergic cells. GABAergic neurons occur in the upper lip and in the wall of the esophagus. Serotonergic neurons are present in the lower lip; the pre-oral hood contains an apical ganglion which extends axons along the base of the epidermis overlying the blastocoel. The dopaminergic and GABAergic components of the nervous system are associated with effectors involved in feeding and swimming. The serotonergic component is not associated with any apparent effectors but may have a role in metamorphosis.


Langmuir | 2012

An Effective Polymer Cross-Linking Strategy To Obtain Stable Dispersions of Upconverting NaYF4 Nanoparticles in Buffers and Biological Growth Media for Biolabeling Applications

Guicheng Jiang; Jothirmayanantham Pichaandi; Noah J. J. Johnson; Robert D. Burke; Frank C. J. M. van Veggel

Ligands on the nanoparticle surface provide steric stabilization, resulting in good dispersion stability. However, because of their highly dynamic nature, they can be replaced irreversibly in buffers and biological medium, leading to poor colloidal stability. To overcome this, we report a simple and effective cross-linking methodology to transfer oleate-stabilized upconverting NaYF(4) core/shell nanoparticles (UCNPs) from hydrophobic to aqueous phase, with long-term dispersion stability in buffers and biological medium. Amphiphilic poly(maleic anhydride-alt-1-octadecene) (PMAO) modified with and without poly(ethylene glycol) (PEG) was used to intercalate with the surface oleates, enabling the transfer of the UCNPs to water. The PMAO units on the phase transferred UCNPs were then successfully cross-linked using bis(hexamethylene)triamine (BHMT). The primary advantage of cross-linking of PMAO by BHMT is that it improves the stability of the UCNPs in water, physiological saline buffers, and biological growth media and in a wide range of pH values when compared to un-cross-linked PMAO. The cross-linked PMAO-BHMT coated UCNPs were found to be stable in water for more than 2 months and in physiological saline buffers for weeks, substantiating the effectiveness of cross-linking in providing high dispersion stability. The PMAO-BHMT cross-linked UCNPs were extensively characterized using various techniques providing supporting evidence for the cross-linking process. These UCNPs were found to be stable in serum supplemented growth medium (37 °C) for more than 2 days. Utilizing this, we demonstrate the uptake of cross-linked UCNPs by LNCaP cells (human prostate cancer cell line), showing their utility as biolabels.


Development Growth & Differentiation | 1986

Development of Serotonergic Neurons in Embryos of the Sea Urchin, Strongylocentrotus purpuratus

Brent W. Bisgrove; Robert D. Burke

The development of the serotonergic component of the nervous system of larvae of S. purpuratus is traced using indirect immunofluorescence with a polyclonal antibody against the neurotransmitter serotonin. Initially one or two neuroblasts can be detected in the thickened epithelium of the animal plate of late gastrulae (56 hr). The number of immunoreactive cells increases to about eight during formation of the pluteus (85–90 hr). Immunoreactive axons appear simultaneously from all neuroblasts present in the 79 hr prism stage larva and form the apical ganglion. It is proposed that this component of the larval nervous system is derived from a small number of ectodermal cells associated with the apical tuft.


International Review of Cytology-a Survey of Cell Biology | 1999

Invertebrate Integrins: Structure, Function, and Evolution

Robert D. Burke

Integrins are a family of molecules that have fundamental roles in cell-cell and cell-matrix adhesion. It is thought that all metazoan cells have one or more integrin receptors on their surface and that these molecules may have been key in the evolution of multicellularity. Knowledge of the structure, function, and distribution of integrin subunits in invertebrate phyla remains incomplete. However, through the recent use of polymerase chain reaction, integrin subunits have been identified in at least five phyla; sponges, cnidarians, nemadodes, arthropods, and echinoderms. The structure of all of the invertebrate subunits is remarkably similar to that of vertebrate integrin subunits. Some experimental data and patterns of expression indicate that invertebrate integrins have a range of functions similar to those of vertebrate integrins. The ligands are not well characterized but at least two laminin-binding receptors have been identified and two other receptors appear to bind using Arg-Gly-Asp motifs. Invertebrate integrins are present during development, in adults, and on a range of cell types including cells with immunological functions such as hemocytes and coelomocytes. Analysis of the invertebrate beta subunits indicates that the invertebrate integrins have diverged independently within each phylum. The two major clades of vertebrate integrins (beta 1, beta 2, beta 7 and beta 3, beta 5, beta 6, beta 8) appear to have radiated since the divergence of the deuterostomes and there are no distinct orthologous subunits in any of the invertebrate phyla. Since fundamental functions of integrins appear to be conserved, studies of invertebrate integrins have the potential of contributing to our understanding of this important group of receptors.


Development | 2006

Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos

Shunsuke Yaguchi; Junko Yaguchi; Robert D. Burke

The animal plate of the sea urchin embryo becomes the apical organ, a sensory structure of the larva. In the absence of vegetal signaling, an expanded and unpatterned apical organ forms. To investigate the signaling that restricts the size of the animal plate and patterns neurogenesis, we have expressed molecules that regulate specification of ectoderm in embryos and chimeras. Enhancing oral ectoderm suppresses serotonergic neuron differentiation, whereas enhancing aboral or ciliary band ectoderm increases differentiation of serotonergic neurons. In embryos in which vegetal signaling is blocked, Nodal expression does not reduce the size of the thickened animal plate; however, almost no neurons form. Expression of BMP in the absence of vegetal signaling also does not restrict the size of the animal plate, but abundant serotonergic neurons form. In chimeras in which vegetal signaling is blocked in the entire embryo, and one half of the embryo expresses Nodal, serotonergic neuron formation is suppressed in both halves. In similar chimeras in which vegetal signaling is blocked and one half of the embryo expresses Goosecoid (Gsc), serotonergic neurons form only in the half of the embryo not expressing Gsc. We propose that neurogenesis is specified by a maternal program that is restricted to the animal pole by signaling that is dependent on nuclearization of β-catenin and specifies ciliary band ectoderm. Subsequently, neurogenesis in the animal plate is patterned by suppression of serotonergic neuron formation by Nodal. Like other metazoans, echinoderms appear to have a phase of neural development during which the specification of ectoderm restricts and patterns neurogenesis.


Cell and Tissue Research | 1978

The structure of the nervous system of the pluteus larva of Strongylocentrotus purpuratus.

Robert D. Burke

SummaryTissues that have the ultrastructural characteristics of nervous tissues are associated with ciliary and muscular elements of the pluteus larva of Strongylocentrotus purpuratus. The nerve cells are found along the margins of the ciliary bands, which are composed predominantly of spindle-shaped ciliated cells. The nerve cells contribute axonal processes to a tract of axons, which runs at the base of the ciliary band throughout its length. Axonal tracts, in the esophagus, lie beneath the circumesophageal muscles. Branched microvilli, which have been interpreted as sensory receptors, are located on the oral side of the main ciliary band and connect with the nerve cells in the ciliary band. The nervous structures described here, and other tissues of the pluteus that have been previously described as nervous, are compared on the basis of their association with receptor and effector organs, and their ultrastructural characteristics.

Collaboration


Dive into the Robert D. Burke's collaboration.

Top Co-Authors

Avatar

Diana Wang

University of Victoria

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly Sakaki

Simon Fraser University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge