Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert D. English is active.

Publication


Featured researches published by Robert D. English.


Nature Communications | 2013

Src activation by adrenoreceptors is a key switch for tumour metastasis

Guillermo N. Armaiz-Pena; Julie K. Allen; Anthony Cruz; Rebecca L. Stone; Alpa M. Nick; Yvonne G. Lin; Liz Y. Han; Lingegowda S. Mangala; Gabriel J. Villares; Pablo Vivas-Mejia; Cristian Rodriguez-Aguayo; Archana S. Nagaraja; Kshipra M. Gharpure; Zheng Wu; Robert D. English; Kizhake V. Soman; Mian M.K. Shahzad; Maya Zigler; Michael T. Deavers; Alexander Zien; Theodoros Soldatos; David B. Jackson; John E. Wiktorowicz; Madeline Torres-Lugo; Tom Young; Koen De Geest; Gary E. Gallick; Menashe Bar-Eli; Gabriel Lopez-Berestein; Steve W. Cole

Norepinephrine (NE) can modulate multiple cellular functions important for cancer progression; however, how this single extracellular signal regulates such a broad array of cellular processes is unknown. Here, we identify Src as a key regulator of phosphoproteomic signaling networks activated in response to beta-adrenergic signaling in cancer cells. These results also identify a new mechanism of Src phosphorylation that mediates beta-adrenergic/PKA regulation of downstream networks, thereby enhancing tumor cell migration, invasion and growth. In human ovarian cancer samples, high tumoral NE levels were correlated with high pSrcY419 levels. Moreover, among cancer patients, the use of beta blockers was significantly associated with reduced cancer-related mortality. Collectively, these data provide a pivotal molecular target for disrupting neural signaling in the tumor microenvironment.


Nature Medicine | 2011

Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins

Tor C. Savidge; Petri Urvil; Numan Oezguen; Kausar Ali; Aproteem Choudhury; Vinay Acharya; Iryna V Pinchuk; Alfredo G. Torres; Robert D. English; John E. Wiktorowicz; Michael J. Loeffelholz; Raj Kumar; Lianfa Shi; Weijia Nie; Werner Braun; Bo Herman; Alfred Hausladen; Hanping Feng; Jonathan S. Stamler; Charalabos Pothoulakis

The global prevalence of severe Clostridium difficile infection highlights the profound clinical significance of clostridial glucosylating toxins. Virulence is dependent on the autoactivation of a toxin cysteine protease, which is promoted by the allosteric cofactor inositol hexakisphosphate (InsP6). Host mechanisms that protect against such exotoxins are poorly understood. It is increasingly appreciated that the pleiotropic functions attributed to nitric oxide (NO), including host immunity, are in large part mediated by S-nitrosylation of proteins. Here we show that C. difficile toxins are S-nitrosylated by the infected host and that S-nitrosylation attenuates virulence by inhibiting toxin self-cleavage and cell entry. Notably, InsP6- and inositol pyrophosphate (InsP7)-induced conformational changes in the toxin enabled host S-nitrosothiols to transnitrosylate the toxin catalytic cysteine, which forms part of a structurally conserved nitrosylation motif. Moreover, treatment with exogenous InsP6 enhanced the therapeutic actions of oral S-nitrosothiols in mouse models of C. difficile infection. Allostery in bacterial proteins has thus been successfully exploited in the evolutionary development of nitrosothiol-based innate immunity and may provide an avenue to new therapeutic approaches.


Proteomics Clinical Applications | 2009

Toward the proteome of the human peripheral blood eosinophil

C. Straub; Konrad Pazdrak; Travis W. Young; Susan Stafford; Zheng Wu; John E. Wiktorowicz; Anthony M. Haag; Robert D. English; Kizhake V. Soman; Alexander Kurosky

Eosinophils (EOSs) are granular leukocytes that have significant roles in many inflammatory and immunoregulatory responses, especially asthma and allergic diseases. We have undertaken a fairly comprehensive proteomic analysis of purified peripheral blood EOSs from normal human donors primarily employing 2‐DE with protein spot identification by MALDI‐MS. Protein subfractionation methods employed included IEF (Zoom® Fractionator) and subcellular fractionation using differential protein solubilization. We have identified 3141 proteins, which had Mascot expectation scores of 10−3 or less. Of these 426 were unique and non‐redundant of which 231 were novel proteins not previously reported to occur in EOSs. Ingenuity Pathway Analysis showed that some 70% of the non‐redundant proteins could be subdivided into categories that are clearly related to currently known EOS biological activities. Cytoskeletal and associated proteins predominated among the proteins identified. Extensive protein posttranslational modifications were evident, many of which have not been previously reported that reflected the dynamic character of the EOS. This data set of eosinophilic proteins will prove valuable in comparative studies of disease versus normal states and for studies of gender differences and polymorphic variation among individuals.


Frontiers in Behavioral Neuroscience | 2014

Environmental enrichment alters protein expression as well as the proteomic response to cocaine in rat nucleus accumbens

Cheryl F. Lichti; Xiuzhen Fan; Robert D. English; Yafang Zhang; Dingge Li; Fanping Kong; Mala Sinha; Clark R. Andersen; Heidi Spratt; Bruce A. Luxon; Thomas A. Green

Prior research demonstrated that environmental enrichment creates individual differences in behavior leading to a protective addiction phenotype in rats. Understanding the mechanisms underlying this phenotype will guide selection of targets for much-needed novel pharmacotherapeutics. The current study investigates differences in proteome expression in the nucleus accumbens of enriched and isolated rats and the proteomic response to cocaine self-administration using a liquid chromatography mass spectrometry (LCMS) technique to quantify 1917 proteins. Results of complementary Ingenuity Pathways Analyses (IPA) and gene set enrichment analyses (GSEA), both performed using protein quantitative data, demonstrate that cocaine increases vesicular transporters for dopamine and glutamate as well as increasing proteins in the RhoA pathway. Further, cocaine regulates proteins related to ERK, CREB and AKT signaling. Environmental enrichment altered expression of a large number of proteins implicated in a diverse number of neuronal functions (e.g., energy production, mRNA splicing, and ubiquitination), molecular cascades (e.g., protein kinases), psychiatric disorders (e.g., mood disorders), and neurodegenerative diseases (e.g., Huntingtons and Alzheimers diseases). Upregulation of energy metabolism components in EC rats was verified using RNA sequencing. Most of the biological functions and pathways listed above were also identified in the Cocaine X Enrichment interaction analysis, providing clear evidence that enriched and isolated rats respond quite differently to cocaine exposure. The overall impression of the current results is that enriched saline-administering rats have a unique proteomic complement compared to enriched cocaine-administering rats as well as saline and cocaine-taking isolated rats. These results identify possible mechanisms of the protective phenotype and provide fertile soil for developing novel pharmacotherapeutics. Proteomics data are available via ProteomeXchange with identifier PXD000990.


Journal of Proteome Research | 2012

Model Studies on iTRAQ Modification of Peptides: Sequence-dependent Reaction Specificity

John E. Wiktorowicz; Robert D. English; Zheng Wu; Alexander Kurosky

A multiplexed peptide quantification strategy using the iTRAQ reagent has been described for relative measurements of peptides in digested protein mixtures. To validate the chemical specificity of the iTRAQ reaction, we have performed a detailed study of iTRAQ reactivity with two sets of synthetic peptides. The first set of peptides had sequences of Tyr-Xaa-Ser-Glu-Gly-Leu-Ser-Lys and Tyr-Xaa-Ser-Glu-Tyr-Leu-Ser-Lys where Xaa = Ala, Pro, Trp, Tyr, or Glu and was designed to study the extent of O-acylation by iTRAQ, especially hydroxyl-containing residues in different positions. The second set of peptides included Ala-Ser-Glu-His-Ala-Xaa-Tyr-Gly where Xaa = Ser, Thr, or Tyr and was selected to investigate the effect of histidyl residues separated by one amino acid residue from seryl, tyrosyl, or threonyl residues. Our findings indicated that, in addition to variable levels of O-acylation of nonsequence-specific hydroxyl-containing residues, significant sequence-specific O-acylation of seryl, threonyl, and tyrosyl hydroxyls occurred when separated one residue removed from a histidyl residue, that is, (Tyr/Ser)-Xaa-His or His-Xaa-(Tyr/Ser/Thr). This behavior was verified by a separate spiking experiment of one of the first set of peptides into Escherichia coli protein extracts, followed by retention time targeted LC-MS/MS to demonstrate the occurrence of modifications in a complex mixture. These sequence-dependent O-acylation modifications can be confounding factors to accurate MS quantification. Reversal of peptide O-acylation by the iTRAQ reagent can be accomplished by reaction with hydroxylamine with virtually no cleavage of N-acylation and is a recommended modification of the iTRAQ protocol for many applications.


Journal of Proteome Research | 2009

High-Throughput Liquid-Liquid Fractionation of Multiple Protein Post-Translational Modifications

James H. DeFord; Jonathan E. Nuss; James K. Amaning; Robert D. English; Don Tjernlund; John Papaconstantinou

Post-translational protein modifications have contributed significantly to the identification of macromolecular biomarkers of biological processes. We have modified a two-dimensional HPLC system (Beckman Coulter PF2D ProteomeLab) to create proteome maps of post-translational protein modifications. This system resolves complex protein mixtures by anion exchange chromatofocusing in the first dimension and hydrophobicity (reverse phase chromatography) in the second dimension. The simultaneous identification of multiple protein modifications, accomplished by incorporating a photo diode array (PDA) detector into the PF2D system, facilitates the simultaneous production of three-dimensional proteome maps and visualization of both unmodified and post-translationally modified (PTM) proteins at their signature wavelengths within the proteome. We describe procedures for the simultaneous resolution of proteome maps, the identification of proteins modified by nitration, carbonylation, and phosphorylation, and proteins with unique spectra such as the heme containing proteins.


Toxicology Mechanisms and Methods | 2014

Proteomic identification of carbonylated proteins in the kidney of trichloroethene-exposed MRL+/+ mice

Xiuzhen Fan; Gangduo Wang; Robert D. English; M. Firoze Khan

Abstract Trichloroethene (TCE), a common environmental and occupational pollutant, is associated with multiorgan toxicity. Kidney is one of major target organs affected as a result of TCE exposure. Our previous studies have shown that exposure to TCE causes increased protein oxidation (protein carbonylation) in the kidneys of autoimmune-prone MRL+/+ mice, and suggested a potential role of protein oxidation in TCE-mediated nephrotoxicity. To assess the impact of chronic TCE exposure on protein oxidation, particularly to identify the carbonylated proteins in kidneys, female MRL+/+ mice were treated with TCE at the dose of 2 mg/ml via drinking water for 36 weeks and kidney protein extracts were analyzed for protein carbonyls and carbonylated proteins identified using proteomic approaches (2D gel, Western blot, MALDI TOF/TOF MS/MS, etc.). TCE treatment led to significantly increased protein carbonyls in the kidney protein extracts (20 000 g pellet fraction). Interestingly, among 18 identified carbonylated proteins, 10 were found only in the kidneys of TCE-treated mice, whereas other 8 were present in the kidneys of both control and TCE-treated mice. The identified carbonylated proteins represent skeletal proteins, chaperones, stress proteins, enzymes, plasma protein and proteins involved in signaling pathways. The findings provide a map for further exploring the role of carbonylated proteins in TCE-mediated nephrotoxicity.


Cancer Research | 2011

Abstract 937: Molecular dynamics of SrcS17 activation in chronic stress-induced tumor growth

Guillermo Armaiz Pena; Rebecca L. Stone; Alpa M. Nick; Gabriel J. Villares; Anthony Cruz; Pablo Vivas-Mejias; Zheng Wu; Robert D. English; Kizhake V. Soman; Michael T. Deavers; Alexander Zien; Theodoras Soldatos; David B. Jackson; John E. Wiktorowicz; Madeline Torres-Lugo; Gustavo E. López; Gary E. Gallick; Koen De Geest; Menashe Bar-Eli; Gabriel Lopez-Berestein; Steve W. Cole; Susan K. Lutgendorf; Anil K. Sood

Clinical studies have demonstrated that chronic stress can influence cancer progression. However, the underlying mechanisms are not fully understood. To determine the molecular drivers of downstream signaling networks activated in response to chronic stress, we performed a phosphoproteomic analysis and determined that the non-receptor tyrosine kinase, Src, was the key regulator of these networks. Since Src plays an important role in cancer biology, we examined the biological and clinical significance of Src in stress-mediated tumor growth. Norepinephrine (NE) rapidly activated Src Y419 in β-adrenergic receptor (ADRB) positive ovarian cancer cell lines, but not in ADRB-null cells. Confocal microscopy showed that Src was rapidly recruited to the cellular membrane after NE exposure in ADRB positive ovarian cancer cells. Furthermore, treatment with different ADRB agonists and blockers determined that ADRB2 is required for Src Y419 phosphorylation. Treatment with a cAMP agonist or PKA agonist/antagonists demonstrated that cAMP/PKA signaling is required for NE-induced Src activation. The unexpected Src activation via cAMP/PKA was found to be mediated by direct phosphorylation of Src S17 following NE treatment. In Src-/- cells transiently expressing WT Src, NE caused Src Y419 phosphorylation, which was not observed when cells were transfected with a Src S17A construct. In order to investigate how S17 phosphorylation leads to Src activation, we performed molecular dynamic simulations and observed that upon Src S17 phosphorylation, Src undergoes significant structural changes that expose its Y419 residue. To understand the functional consequences of stress-induced Src activation, we performed migration and invasion assays. Exposure to NE resulted in an increase in ovarian cancer cell migration and invasion that was completely abrogated by Src-targeted siRNA (P Y419 was associated with worse patient survival (P Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research; 2011 Apr 2-6; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2011;71(8 Suppl):Abstract nr 937. doi:10.1158/1538-7445.AM2011-937


The Journal of Allergy and Clinical Immunology | 2009

Proteome Analysis of the Peripheral Blood Human Eosinophil

Alexander Kurosky; C. Straub; Konrad Pazdrak; Travis W. Young; Susan Stafford; Zheng Wu; John E. Wiktorowicz; Anthony M. Haag; Robert D. English; Kizhake V. Soman


Nature Communications | 2013

Erratum: Src activation by β-adrenoreceptors is a key switch for tumour metastasis (Nature Communications (2013) 4 (1403) DOI:10.1038/ncomms2413)

Guillermo N. Armaiz-Pena; Julie K. Allen; Anthony Cruz; Rebecca L. Stone; Alpa M. Nick; Yvonne G. Lin; Liz Y. Han; Lingegowda S. Mangala; Gabriel J. Villares; Pablo Vivas-Mejia; Cristian Rodriguez-Aguayo; Archana S. Nagaraja; Kshipra M. Gharpure; Zheng Wu; Robert D. English; Kizhake V. Soman; Mian M.K. Shahzad; Maya Zigler; Michael T. Deavers; Alexander Zien; Theodoros Soldatos; David B. Jackson; John E. Wiktorowicz; Madeline Torres-Lugo; Tom Young; Koen De Geest; Gary E. Gallick; Menashe Bar-Eli; Gabriel Lopez-Berestein; Steve W. Cole

Collaboration


Dive into the Robert D. English's collaboration.

Top Co-Authors

Avatar

John E. Wiktorowicz

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Zheng Wu

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Kizhake V. Soman

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Alpa M. Nick

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gabriel J. Villares

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gabriel Lopez-Berestein

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gary E. Gallick

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Menashe Bar-Eli

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael T. Deavers

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge