Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert D. Hardy is active.

Publication


Featured researches published by Robert D. Hardy.


The Journal of Infectious Diseases | 2004

Respiratory Syncytial Virus Induces Pneumonia, Cytokine Response, Airway Obstruction, and Chronic Inflammatory Infiltrates Associated with Long-Term Airway Hyperresponsiveness in Mice

Hasan S. Jafri; Susana Chávez-Bueno; Asuncion Mejias; Ana M. Gomez; Ana María Ríos; Shahryar S. Nassi; Munira Yusuf; Payal Kapur; Robert D. Hardy; Jeanine Hatfield; Beverly Barton Rogers; Karen Krisher; Octavio Ramilo

BACKGROUND Respiratory syncytial virus (RSV) infection is associated with acute morbidity (e.g., pneumonia and airway obstruction [AO]) and long-term complications (e.g., airway hyperresponsiveness [AHR]). We present a comprehensive evaluation of the acute and chronic phases of RSV respiratory tract infection, using a mouse model. METHODS BALB/c mice were inoculated with RSV and monitored for 154 days. RSV loads and cytokines were measured in bronchoalveolar lavage (BAL) samples. Pneumonia severity was assessed using a standard histopathologic score, and pulmonary function was determined by plethysmography. RESULTS RSV-infected mice exhibited viral replication that peaked on day 4-5 and became undetectable by day 7. These mice developed acute pneumonia (peak days, 4-5) and chronic pulmonary inflammatory infiltrates that lasted up to 154 days after inoculation. BAL concentrations of tumor necrosis factor- alpha, interleukin (IL)-6, interferon- gamma, IL-4, IL-10, KC (an IL-8 homologue), MIG (CXCL9), RANTES, macrophage inflammatory protein-1 alpha, and eotaxin were significantly higher in RSV-infected mice than in control mice. RSV-infected mice developed acute AO during the first week of infection that persisted for 42 days. RSV-infected mice also showed significant AHR in response to methacholine up to 154 days. CONCLUSION This model provides a means to investigate the immunopathogenesis of RSV infection and its association with reactive airway disease.


Infection and Immunity | 2002

Mycoplasma pneumoniae Induces Chronic Respiratory Infection, Airway Hyperreactivity, and Pulmonary Inflammation: a Murine Model of Infection-Associated Chronic Reactive Airway Disease

Robert D. Hardy; Hasan S. Jafri; Kurt Olsen; Jeanine Hatfield; Janie Iglehart; Beverly Barton Rogers; Padma Patel; Gail H. Cassell; George H. McCracken; Octavio Ramilo

ABSTRACT Because chronic Mycoplasma pneumoniae respiratory infection is hypothesized to play a role in asthma, the potential of M. pneumoniae to establish chronic respiratory infection with associated pulmonary disease was investigated in a murine model. BALB/c mice were intranasally inoculated once with M. pneumoniae and examined at 109, 150, 245, 368, and 530 days postinoculation. M. pneumoniae was detected in bronchoalveolar lavage fluid by culture or PCR in 70 and 22% of mice at 109 and 530 days postinoculation, respectively. Lung histopathology was normal up to 368 days postinoculation. At 530 days, however, 78% of the mice inoculated with M. pneumoniae demonstrated abnormal histopathology characterized by peribronchial and perivascular mononuclear infiltrates. A mean histopathologic score (HPS) at 530 days of 5.1 was significantly greater (P < 0.01) than that for controls (HPS score of 0). Serum anti-M. pneumoniae immunoglobulin G was detectable in all of the mice inoculated with M. pneumoniae and was inversely correlated with HPS (r = −0.95, P = 0.01) at 530 days postinoculation. Unrestrained whole-body plethysmography measurement of enhanced pause revealed significantly elevated airway methacholine reactivity in M. pneumoniae-inoculated mice compared with that in controls at 245 days (P = 0.03) and increased airway obstruction at 530 days (P = 0.01). Murine M. pneumoniae respiratory infection can lead to chronic pulmonary disease characterized by airway hyperreactivity, airway obstruction, and histologic inflammation.


Infection and Immunity | 2001

Elevated cytokine and chemokine levels and prolonged pulmonary airflow resistance in a murine Mycoplasma pneumoniae pneumonia model : a microbiologic, histologic, immunologic, and respiratory plethysmographic profile

Robert D. Hardy; Hasan S. Jafri; Kurt Olsen; Meike Wordemann; Jeanine Hatfield; Beverly Barton Rogers; Padma Patel; Lynn B. Duffy; Gail H. Cassell; George H. McCracken; Octavio Ramilo

ABSTRACT Because Mycoplasma pneumoniae is hypothesized to play an important role in reactive airway disease/asthma, a comprehensive murine model of M. pneumoniae lower respiratory infection was established. BALB/c mice were intranasally inoculated once withM. pneumoniae and sacrificed at 0 to 42 days postinoculation. All mice became infected and developed histologic evidence of acute pulmonary inflammation, which cleared by 28 days postinoculation. By contrast, M. pneumoniae persisted in the respiratory tract for the entire 42 days studied. Tumor necrosis factor alpha, gamma interferon, interleukin-6 (IL-6), KC (functional IL-8), MIP-1α, and MCP-1/JE concentrations were significantly elevated in bronchoalveolar lavage samples, whereas IL-4 and IL-10 concentrations were not significantly elevated. Pulmonary airflow resistance, as measured by plethysmography, was detected 1 day postinoculation and persisted even after pulmonary inflammation had resolved at day 28. Serum anti-M. pneumoniae immunoglobulin G titers were positive in all mice by 35 days. This mouse model provides a means to investigate the immunopathogenesis of M. pneumoniae infection and its possible role in reactive airway disease/asthma.


The Journal of Infectious Diseases | 2008

The Impact of Steroids Given with Macrolide Therapy on Experimental Mycoplasma pneumoniae Respiratory Infection

Claudia Tagliabue; C. M. Salvatore; C. Techasaensiri; Asuncion Mejias; Juan P. de Torres; Kathy Katz; Ana M. Gomez; Susanna Esposito; Nicola Principi; Robert D. Hardy

BACKGROUND Systemic steroids have been advocated in addition to antimicrobial therapy for severe Mycoplasma pneumoniae pneumonia. We evaluated the efficacy of clarithromycin, dexamethasone, and combination therapy for M. pneumoniae respiratory infection. METHODS Mice infected with M. pneumoniae were treated with clarithromycin, dexamethasone, combined clarithromycin/dexamethasone, or placebo daily; mice were evaluated at baseline and after 1, 3, and 6 days of therapy. Outcome variables included M. pneumoniae culture, lung histopathologic score (HPS), and bronchoalveolar lavage cytokine, chemokine, and growth factor concentrations. RESULTS Clarithromycin monotherapy resulted in the greatest reductions in M. pneumoniae concentrations. After 3 days of treatment, combination therapy significantly reduced lung HPS compared with placebo, clarithromycin, and dexamethasone alone, whereas, after 6 days of therapy, clarithromycin alone and combination therapy significantly reduced lung HPS compared with placebo. Concentrations of interleukin (IL)-12 p40, RANTES, macrophage chemotactic protein-1, and cytokine-induced neutrophil chemoattractant were significantly lower in mice treated with clarithromycin alone and/or combination therapy compared with dexamethasone alone and/or placebo; combination therapy resulted in a significantly greater reduction than clarithromycin alone for IL-12 p40 and RANTES. CONCLUSIONS Although monotherapy with clarithromycin had the greatest effect on reducing concentrations of M. pneumoniae, combination therapy had the greatest effect on decreasing levels of cytokines and chemokines as well as pulmonary histologic inflammation.


Antimicrobial Agents and Chemotherapy | 2003

Antimicrobial and Immunologic Activities of Clarithromycin in a Murine Model of Mycoplasma pneumoniae-Induced Pneumonia

Robert D. Hardy; Ana María Ríos; Susana Chávez-Bueno; Hasan S. Jafri; Jeanine Hatfield; Beverly Barton Rogers; George H. McCracken; Octavio Ramilo

ABSTRACT Because macrolide antibiotics are hypothesized to possess immunomodulatory activity independent of their antimicrobial activity, we evaluated the immunomodulatory effect of clarithromycin in a murine model of lung inflammation induced by either live or UV-killed Mycoplasma pneumoniae. BALB/c mice were intranasally inoculated once with live or UV-killed M. pneumoniae. Clarithromycin (25 mg/kg of body weight) or placebo was subcutaneously administered once daily in both groups of mice. In mice infected with live M. pneumoniae, clarithromycin treatment significantly reduced quantitative M. pneumoniae bronchoalveolar lavage (BAL) culture, pulmonary histopathologic scores (HPS), and airway resistance-obstruction (as measured by plethysmography) compared with placebo. Concentrations of tumor necrosis factor alpha, gamma interferon, interleukin-6 (IL-6), mouse KC (functional IL-8), JE/MCP-1, and MIP-1α in BAL fluid were also significantly decreased in mice infected with live M. pneumoniae given clarithromycin. In contrast, mice inoculated with UV-killed M. pneumoniae had no significant reduction in HPS, airway resistance-obstruction, or BAL cytokine or chemokine concentrations in response to clarithromycin administration. Clarithromycin therapy demonstrated beneficial effects (microbiologic, histologic, respiratory, and immunologic) on pneumonia in the mice infected with live M. pneumoniae; this was not observed in the mice inoculated with UV-killed M. pneumoniae.


Antimicrobial Agents and Chemotherapy | 2001

Pharmacodynamics and Bactericidal Activity of Moxifloxacin in Experimental Escherichia coli Meningitis

Violeta Rodríguez-Cerrato; Cynthia C. McCoig; Ian C. Michelow; Faryal Ghaffar; Hasan S. Jafri; Robert D. Hardy; Chetan B. Patel; Kurt Olsen; George H. McCracken

ABSTRACT Moxifloxacin, an 8-methoxyquinolone with broad-spectrum activity in vitro, was studied in the rabbit model of Escherichia colimeningitis. The purposes of this study were to evaluate the bactericidal effectiveness and the pharmacodynamic profile of moxifloxacin in cerebrospinal fluid (CSF) and to compare the bactericidal activity with that of ceftriaxone and meropenem therapy. After induction of meningitis, animals were given single doses of 10, 20, and 40 mg/kg or divided-dose regimens of 5, 10, and 20 mg/kg twice, separated by 6 h. After single doses, the penetration of moxifloxacin into purulent CSF, measured as percentage of the area under the concentration-time curve (AUC) in CSF relative to the AUC in plasma, was approximately 50%. After single doses of 10, 20, and 40 mg/kg, the maximum CSF concentration (Cmax) values were 1.8, 4.2, and 4.9 μg/ml, respectively; the AUC values (total drug) were 13.4, 25.4, and 27.1 μg/ml · h, respectively, and the half-life values (t½) were 6.7, 6.6, and 4.7 h, respectively. The bacterial killing in CSF for moxifloxacin, calculated as the Δlog10 CFU per milliliter per hour, at 3, 6, and 12 h after single doses of 10, 20, and 40 mg/kg were −5.70, −6.62, and −7.02; −7.37, −7.37, and −6.87; and −6.62, −6.62, and −6.62, respectively, whereas those of ceftriaxone and meropenem were −4.18, −5.24, and −4.43, and −3.64, −3.59, and −4.12, respectively. The CSF pharmacodynamic indices of AUC/MBC and Cmax/MBC were interrelated (r = 0.81); there was less correlation withT > MBC (r = 0.74). In this model, therapy with moxifloxacin appears to be at least as effective as ceftriaxone and more effective than meropenem therapy in eradicatingE. coli from CSF.


Molecular Microbiology | 2010

Mycoplasma pneumoniae Community Acquired Respiratory Distress Syndrome toxin expression reveals growth phase and infection-dependent regulation

T. R. Kannan; Oxana Musatovova; Sowmya Balasubramanian; Marianna P. Cagle; Jarrat L. Jordan; Thomas M. Krunkosky; Alan C Davis; Robert D. Hardy; Joel B. Baseman

Mycoplasma pneumoniae causes acute and chronic respiratory infections, including tracheobronchitis and community acquired pneumonia, and is linked to asthma and an array of extra‐pulmonary disorders. Recently, we identified an ADP‐ribosylating and vacuolating toxin of M. pneumoniae, designated Community Acquired Respiratory Distress Syndrome (CARDS) toxin. In this study we analysed CARDS toxin gene (annotated mpn372) transcription and identified its promoter. We also compared CARDS toxin mRNA and protein profiles in M. pneumoniae during distinct in vitro growth phases. CARDS toxin mRNA expression was maximal, but at low levels, during early exponential growth and declined sharply during mid‐to‐late log growth phases, which was in direct contrast to other mycoplasma genes examined. Between 7% and 10% of CARDS toxin was localized to the mycoplasma membrane at mid‐exponential growth, which was reinforced by immunogold electron microscopy. No CARDS toxin was released into the medium. Upon M. pneumoniae infection of mammalian cells, increased expression of CARDS toxin mRNA was observed when compared with SP‐4 broth‐grown cultures. Further, confocal immunofluorescence microscopy revealed that M. pneumoniae readily expressed CARDS toxin during infection of differentiated normal human bronchial epithelial cells. Analysis of M. pneumoniae‐infected mouse lung tissue revealed high expression of CARDS toxin per mycoplasma cell when compared with M. pneumoniae cells grown in SP‐4 medium alone. Taken together, these studies indicate that CARDS toxin expression is carefully controlled by environmental cues that influence its transcription and translation. Further, the acceleration of CARDS toxin synthesis and accumulation in vivo is consistent with its role as a bona fide virulence determinant.


Journal of Acquired Immune Deficiency Syndromes | 2008

Prevalence of and risk factors for methicillin-resistant Staphylococcus aureus (MRSA) nasal colonization in HIV-infected ambulatory patients.

Mary Jo Cenizal; Robert D. Hardy; Marc Anderson; Kathy Katz; Daniel J. Skiest

Background:Estimates of the prevalence of colonization with methicillin-resistant Staphylococcus aureus (MRSA) vary in HIV-infected patients. Methods:HIV clinic patients were prospectively cultured. Bilateral nasal and axillary swabs were plated on BBL CHROMagar MRSA media. Molecular typing was done by pulse-field gel electrophoresis, and staphylococcal cassette chromosomemec typing was determined. A patient questionnaire was conducted to ascertain potential MRSA risk factors; medical records were reviewed. Results:Fifteen of 146 (10.3%) patients had MRSA nasal colonization; 1 also had axillary colonization. Twelve of 15 isolates were staphylococcal cassette chromosomemec type IV, and 8 of 14 were USA300 or USA400 genotype. MRSA colonization was associated with lower CD4 cell count, not receiving current or recent antibiotics, history of prior MRSA or methicillin-susceptible Staphylococcus aureus infection (P < 0.05 for all), and a trend toward history of hospitalization or emergency department visit in the past year (P = 0.064). Current use of trimethoprim-sulfamethoxazole was protective for colonization: 0 of 29 trimethoprim-sulfamethoxazole recipients were colonized versus 15 of 117 nonrecipients, P = 0.04. In a multivariate logistic regression model, prior infection with either methicillin-susceptible S. aureus (odds ratio = 32.4, 95% confidence interval 3.04 to 345.42) or MRSA (odds ratio = 9.71, 95% confidence interval 2.20 to 43.01), not receiving current or recent antibiotics (odds ratio = 0.026, 95% confidence interval 0.002 to 0.412), and lower CD4 count (odds ratio 0.996, 95% confidence interval 0.992 to 0.999) were associated with MRSA colonization. Discussion:The prevalence of MRSA nasal colonization was relatively high compared with prior studies; axillary colonization was rare. Prior staphylococcal infection (methicillin-susceptible S. aureus or MRSA), not receiving antibiotics, and lower CD4 count were associated with MRSA nasal colonization. Trimethoprim-sulfamethoxazole seemed to be protective of MRSA colonization.


Antimicrobial Agents and Chemotherapy | 2004

Impact of Cethromycin (ABT-773) Therapy on Microbiological, Histologic, Immunologic, and Respiratory Indices in a Murine Model of Mycoplasma pneumoniae Lower Respiratory Infection

Ana María Ríos; Asuncion Mejias; Susana Chávez-Bueno; Monica Fonseca-Aten; Kathy Katz; Jeanine Hatfield; Ana M. Gomez; Hasan S. Jafri; George H. McCracken; Octavio Ramilo; Robert D. Hardy

ABSTRACT Mycoplasma pneumoniae is a major etiologic agent of acute lower respiratory infections. We evaluated the antimicrobial and immunologic effects of cethromycin (ABT-773), a ketolide antibiotic, for the treatment of M. pneumoniae pneumonia in a mouse model. Eight-week-old BALB/c mice were inoculated intranasally once with 106 CFU of M. pneumoniae on day 0. Treatment was started 24 h after inoculation. Groups of mice were treated subcutaneously with cethromycin at 25 mg/kg of body weight or with placebo daily until sacrifice. Five to ten mice per group were evaluated at days 1, 4, 7, and 10 after inoculation. Outcome variables included bronchoalveolar lavage (BAL) for M. pneumoniae quantitative culture and cytokine and chemokine concentration determinations by enzyme-linked immunosorbent assay (tumor necrosis factor alpha [TNF-α], gamma interferon [IFN-γ], interleukin-1β [IL-1β], IL-2, IL-4, IL-12, granulocyte-macrophage colony-stimulating factor, IL-8, monocyte chemoattractant protein 1 [MCP-1], and macrophage inflammatory protein 1α [MIP-1α]), histopathologic score of the lungs (HPS), and pulmonary function tests (PFT) using whole-body, unrestrained plethysmography at the baseline and post-methacholine exposure as indicators of airway obstruction (AO) and airway hyperresponsiveness (AHR), respectively. The cethromycin-treated mice had a greater reduction in M. pneumoniae culture titers than placebo-treated mice, reaching statistical significance on days 7 and 10 (P < 0.05). HPS was significantly reduced in cethromycin-treated mice compared with placebo-treated mice on days 4, 7, and 10 (P < 0.05). Cytokine concentrations in BAL samples were reduced in mice that received cethromycin, and the differences were statistically significant for 7 of the 10 cytokines measured (TNF-α, IFN-γ, IL-1β, IL-8, IL-12, MCP-1, and MIP-1α) on day 4 (P < 0.05). PFT values were improved in the cethromycin-treated mice, with AO and AHR significantly reduced on day 4 (P < 0.05). In this mouse model, treatment with cethromycin significantly reduced M. pneumoniae culture titers in BAL samples, cytokine and chemokine concentrations in BAL samples, histologic inflammation in the lungs, and disease severity as defined by AO and AHR.


Antimicrobial Agents and Chemotherapy | 2003

Garenoxacin (BMS-284756) and Moxifloxacin in Experimental Meningitis Caused by Vancomycin-Tolerant Pneumococci

Violeta Rodríguez-Cerrato; Cindy C. McCoig; Jesus Saavedra; Tess Barton; Ian C. Michelow; Robert D. Hardy; Karen L. Bowlware; Janie Iglehart; Kathy Katz; George H. McCracken

ABSTRACT The emergence of multidrug-resistant strains of Streptococcus pneumoniae drives the development and evaluation of new antipneumococcal agents, especially for the treatment of bacterial meningitis. The aims of the present study were to assess the antibacterial effectiveness of two new quinolones, garenoxacin (BMS; BMS-284756) and moxifloxacin (MOX) in experimental meningitis caused by a vancomycin (VAN)-tolerant S. pneumoniae strain and to compare the results with those obtained by therapy with VAN and ceftriaxone (CRO) in combination. Meningitis was induced in young male New Zealand White rabbits by intracisternal inoculation of a VAN-tolerant pneumococcal strain (strain Tupelo) from a child with meningitis. Sixteen hours after inoculation, therapy was given by intravenous administration of BMS at 20 mg/kg of body weight, followed 5 h later by administration at a dosage of 10 mg/kg (n = 9 animals) or MOX as two doses of 20 mg/kg every 5 h (n = 8 animals). For comparison, we studied the following groups: (i) animals treated with VAN (20 mg/kg every 5 h, three doses) and CRO (125 mg/kg, one dose) (n = 9), (ii) animals infected with a VAN-tolerant strain but not treated (n = 8), (iii) animals infected with a VAN-tolerant pneumococcus isolated from the nasopharynx of a carrier and treated with BMS (n = 8), and (iv) animals infected with a cephalosporin-resistant type 6B S. pneumoniae strain and treated with BMS (n = 6). The MICs of penicillin, CRO, VAN, BMS, and MOX for the Tupelo strain were 2, 1, 0.5, 0.06, and 0.03 μg/ml, respectively. The rates of killing of strain Tupelo (the change in the log10 number of CFU per milliliter per hour) in cerebrospinal fluid at 5 h were −0.70 ± 0.35, −0.61 ± 0.44, and −0.49 ± 0.36 for BMS, MOX, and VAN-CRO, respectively. Therapy with BMS and MOX was as effective as therapy with VAN-CRO against VAN-tolerant pneumococcal meningitis in rabbits.

Collaboration


Dive into the Robert D. Hardy's collaboration.

Top Co-Authors

Avatar

George H. McCracken

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana M. Gomez

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeanine Hatfield

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kathy Katz

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kurt Olsen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Octavio Ramilo

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Asuncion Mejias

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Janie Iglehart

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge