Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert D. Kirkton is active.

Publication


Featured researches published by Robert D. Kirkton.


Cardiovascular Research | 2009

Cardiac fibroblast paracrine factors alter impulse conduction and ion channel expression of neonatal rat cardiomyocytes

Dawn Pedrotty; Rebecca Y. Klinger; Robert D. Kirkton; Nenad Bursac

AIMS The pathological proliferation of cardiac fibroblasts (CFs) in response to heart injury results in fibrosis, which correlates with arrhythmia generation and heart failure. Here we systematically examined the effect of fibroblast-derived paracrine factors on electrical propagation in cardiomyocytes. METHODS AND RESULTS Neonatal rat cardiac monolayers were exposed for 24 h to media conditioned by CFs. Optical mapping, sharp microelectrode recordings, quantitative RT-PCR, and immunostaining were used to assess the changes in the propagation and shape of the action potential and underlying changes in gene and protein expression. The fibroblast paracrine factors produced a 52% reduction in cardiac conduction velocity, a 217% prolongation of action potential duration, a 64% decrease of maximum capture rate, a 21% increase in membrane resting potential, and an 80% decrease of action potential upstroke velocity. These effects were dose dependent and partially reversible with removal of the conditioned media. No fibroblast proliferation, cardiomyocyte apoptosis, or decreased connexin-43 expression, phosphorylation, and function were found in conditioned cardiac cultures. In contrast, the expression of the fast sodium, inward rectifying potassium, and transient outward potassium channels were, respectively, reduced 3.8-, 6.6-fold, and to undetectable levels. The expression of beta-myosin heavy chain increased 17.4-fold. No electrophysiological changes were observed from media conditioned by CFs in the presence of cardiomyocytes. CONCLUSION Paracrine factors from neonatal CFs alone produced significant electrophysiological changes in neonatal rat cardiomyocytes resembling those found in several cardiac pathologies.


PLOS ONE | 2013

Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming.

Nicolas Christoforou; Malathi Chellappan; Andrew F. Adler; Robert D. Kirkton; Tianyi Wu; Russell C. Addis; Nenad Bursac; Kam W. Leong

Transient overexpression of defined combinations of master regulator genes can effectively induce cellular reprogramming: the acquisition of an alternative predicted phenotype from a differentiated cell lineage. This can be of particular importance in cardiac regenerative medicine wherein the heart lacks the capacity to heal itself, but simultaneously contains a large pool of fibroblasts. In this study we determined the cardio-inducing capacity of ten transcription factors to actuate cellular reprogramming of mouse embryonic fibroblasts into cardiomyocyte-like cells. Overexpression of transcription factors MYOCD and SRF alone or in conjunction with Mesp1 and SMARCD3 enhanced the basal but necessary cardio-inducing effect of the previously reported GATA4, TBX5, and MEF2C. In particular, combinations of five or seven transcription factors enhanced the activation of cardiac reporter vectors, and induced an upregulation of cardiac-specific genes. Global gene expression analysis also demonstrated a significantly greater cardio-inducing effect when the transcription factors MYOCD and SRF were used. Detection of cross-striated cells was highly dependent on the cell culture conditions and was enhanced by the addition of valproic acid and JAK inhibitor. Although we detected Ca2+ transient oscillations in the reprogrammed cells, we did not detect significant changes in resting membrane potential or spontaneously contracting cells. This study further elucidates the cardio-inducing effect of the transcriptional networks involved in cardiac cellular reprogramming, contributing to the ongoing rational design of a robust protocol required for cardiac regenerative therapies.


Circulation Research | 2011

Fibroblast Growth Factor Homologous Factor 13 Regulates Na+ Channels and Conduction Velocity in Murine Hearts

Chuan Wang; Jessica A. Hennessey; Robert D. Kirkton; Chaojian Wang; Victoria Graham; Ram S. Puranam; Paul B. Rosenberg; Nenad Bursac; Geoffrey S. Pitt

Rationale: Fibroblast growth factor homologous factors (FHFs), a subfamily of fibroblast growth factors (FGFs) that are incapable of functioning as growth factors, are intracellular modulators of Na+ channels and have been linked to neurodegenerative diseases. Although certain FHFs have been found in embryonic heart, they have not been reported in adult heart, and they have not been shown to regulate endogenous cardiac Na+ channels or to participate in cardiac pathophysiology. Objective: We tested whether FHFs regulate Na+ channels in murine heart. Methods and Results: We demonstrated that isoforms of FGF13 are the predominant FHFs in adult mouse ventricular myocytes. FGF13 binds directly to, and colocalizes with, the NaV1.5 Na+ channel in the sarcolemma of adult mouse ventricular myocytes. Knockdown of FGF13 in adult mouse ventricular myocytes revealed a loss of function of NaV1.5-reduced Na+ current density, decreased Na+ channel availability, and slowed NaV1.5-reduced Na+ current recovery from inactivation. Cell surface biotinylation experiments showed ≈45% reduction in NaV1.5 protein at the sarcolemma after FGF13 knockdown, whereas no changes in whole-cell NaV1.5 protein or in mRNA level were observed. Optical imaging in neonatal rat ventricular myocyte monolayers demonstrated slowed conduction velocity and a reduced maximum capture rate after FGF13 knockdown. Conclusion: These findings show that FHFs are potent regulators of Na+ channels in adult ventricular myocytes and suggest that loss-of-function mutations in FHFs may underlie a similar set of cardiac arrhythmias and cardiomyopathies that result from NaV1.5 loss-of-function mutations.


American Journal of Physiology-cell Physiology | 2009

Electrotonic loading of anisotropic cardiac monolayers by unexcitable cells depends on connexin type and expression level.

Luke C. McSpadden; Robert D. Kirkton; Nenad Bursac

Understanding how electrotonic loading of cardiomyocytes by unexcitable cells alters cardiac impulse conduction may be highly relevant to fibrotic heart disease. In this study, we optically mapped electrical propagation in confluent, aligned neonatal rat cardiac monolayers electrotonically loaded with cardiac fibroblasts, control human embryonic kidney (HEK-293) cells, or HEK-293 cells genetically engineered to overexpress the gap junction proteins connexin-43 or connexin-45. Gap junction expression and function were assessed by immunostaining, immunoblotting, and fluorescence recovery after photobleaching and were correlated with the optically mapped propagation of action potentials. We found that neonatal rat ventricular fibroblasts negative for the myofibroblast marker smooth muscle alpha-actin expressed connexin-45 rather than connexin-43 or connexin-40, weakly coupled to cardiomyocytes, and, without significant depolarization of cardiac resting potential, slowed cardiac conduction to 75% of control only at high (>60%) coverage densities, similar to loading effects found from HEK-293 cells expressing similar levels of connexin-45. In contrast, HEK-293 cells with connexin-43 expression similar to that of cardiomyocytes significantly decreased cardiac conduction velocity and maximum capture rate to as low as 22% and 25% of control values, respectively, while increasing cardiac action potential duration to 212% of control and cardiac resting potential from -71.6 +/- 4.9 mV in controls to -65.0 +/- 3.8 mV. For all unexcitable cell types and coverage densities, velocity anisotropy ratio remained unchanged. Despite the induced conduction slowing, none of the loading cell types increased the proportion of spontaneously active monolayers. These results signify connexin isoform and expression level as important contributors to potential electrical interactions between unexcitable cells and myocytes in cardiac tissue.


Nature Communications | 2011

Engineering biosynthetic excitable tissues from unexcitable cells for electrophysiological and cell therapy studies

Robert D. Kirkton; Nenad Bursac

Patch-clamp recordings in single-cell expression systems have been traditionally used to study the function of ion channels. However, this experimental setting does not enable assessment of tissue-level function such as action potential (AP) conduction. Here we introduce a biosynthetic system that permits studies of both channel activity in single cells and electrical conduction in multicellular networks. We convert unexcitable somatic cells into an autonomous source of electrically excitable and conducting cells by stably expressing only three membrane channels. The specific roles that these expressed channels have on AP shape and conduction are revealed by different pharmacological and pacing protocols. Furthermore, we demonstrate that biosynthetic excitable cells and tissues can repair large conduction defects within primary 2- and 3-dimensional cardiac cell cultures. This approach enables novel studies of ion channel function in a reproducible tissue-level setting and may stimulate the development of new cell-based therapies for excitable tissue repair.


Regenerative Medicine | 2010

Characterizing functional stem cell-cardiomyocyte interactions

Nenad Bursac; Robert D. Kirkton; Luke C. McSpadden; Brian Liau

Despite the progress in traditional pharmacological and organ transplantation therapies, heart failure still afflicts 5.3 million Americans. Since June 2000, stem cell-based approaches for the prevention and treatment of heart failure have been pursued in clinics with great excitement; however, the exact mechanisms of how transplanted cells improve heart function remain elusive. One of the main difficulties in answering these questions is the limited ability to directly access and study interactions between implanted cells and host cardiomyocytes in situ. With the growing number of candidate cell types for potential clinical use, it is becoming increasingly more important to establish standardized, well-controlled in vitro and in situ assays to compare the efficacy and safety of different stem cells in cardiac repair. This article describes recent innovative methodologies to characterize direct functional interactions between stem cells and cardiomyocytes, aimed to facilitate the rational design of future cell-based therapies for heart disease.


Scientific Reports | 2017

Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage

Nicolas Christoforou; Syandan Chakraborty; Robert D. Kirkton; Andrew F. Adler; Russell C. Addis; Kam W. Leong

Transdifferentiation has been described as a novel method for converting human fibroblasts into induced cardiomyocyte-like cells. Such an approach can produce differentiated cells to study physiology or pathophysiology, examine drug interactions or toxicities, and engineer cardiac tissues. Here we describe the transdifferentiation of human dermal fibroblasts towards the cardiac cell lineage via the induced expression of transcription factors GATA4, TBX5, MEF2C, MYOCD, NKX2–5, and delivery of microRNAs miR-1 and miR-133a. Cells undergoing transdifferentiation expressed ACTN2 and TNNT2 and partially organized their cytoskeleton in a cross-striated manner. The conversion process was associated with significant upregulation of a cohort of cardiac-specific genes, activation of pathways associated with muscle contraction and physiology, and downregulation of fibroblastic markers. We used a genetically encoded calcium indicator and readily detected active calcium transients although no spontaneous contractions were observed in transdifferentiated cells. Finally, we determined that inhibition of Janus kinase 1, inhibition of Glycogen synthase kinase 3, or addition of NRG1 significantly enhanced the efficiency of transdifferentiation. Overall, we describe a method for achieving transdifferentiation of human dermal fibroblasts into induced cardiomyocyte-like cells via transcription factor overexpression, microRNA delivery, and molecular pathway manipulation.


PLOS Computational Biology | 2017

Modeling an Excitable Biosynthetic Tissue with Inherent Variability for Paired Computational-Experimental Studies

Tanmay A. Gokhale; Jong M. Kim; Robert D. Kirkton; Nenad Bursac; Craig S. Henriquez

To understand how excitable tissues give rise to arrhythmias, it is crucially necessary to understand the electrical dynamics of cells in the context of their environment. Multicellular monolayer cultures have proven useful for investigating arrhythmias and other conduction anomalies, and because of their relatively simple structure, these constructs lend themselves to paired computational studies that often help elucidate mechanisms of the observed behavior. However, tissue cultures of cardiomyocyte monolayers currently require the use of neonatal cells with ionic properties that change rapidly during development and have thus been poorly characterized and modeled to date. Recently, Kirkton and Bursac demonstrated the ability to create biosynthetic excitable tissues from genetically engineered and immortalized HEK293 cells with well-characterized electrical properties and the ability to propagate action potentials. In this study, we developed and validated a computational model of these excitable HEK293 cells (called “Ex293” cells) using existing electrophysiological data and a genetic search algorithm. In order to reproduce not only the mean but also the variability of experimental observations, we examined what sources of variation were required in the computational model. Random cell-to-cell and inter-monolayer variation in both ionic conductances and tissue conductivity was necessary to explain the experimentally observed variability in action potential shape and macroscopic conduction, and the spatial organization of cell-to-cell conductance variation was found to not impact macroscopic behavior; the resulting model accurately reproduces both normal and drug-modified conduction behavior. The development of a computational Ex293 cell and tissue model provides a novel framework to perform paired computational-experimental studies to study normal and abnormal conduction in multidimensional excitable tissue, and the methodology of modeling variation can be applied to models of any excitable cell.


Circulation-arrhythmia and Electrophysiology | 2013

Spatial Profiles of Electrical Mismatch Determine Vulnerability to Conduction Failure Across a Host–Donor Cell Interface

Robert D. Kirkton; Nima Badie; Nenad Bursac

Background—Electrophysiological mismatch between host cardiomyocytes and donor cells can directly affect the electrical safety of cardiac cell therapies; however, the ability to study host–donor interactions at the microscopic scale in situ is severely limited. We systematically explored how action potential (AP) differences between cardiomyocytes and other excitable cells modulate vulnerability to conduction failure in vitro. Methods and Results—AP propagation was optically mapped at 75 &mgr;m resolution in micropatterned strands (n=152) in which host neonatal rat ventricular myocytes (AP duration=153.2±2.3 ms, conduction velocity=22.3±0.3 cm/s) seamlessly interfaced with genetically engineered excitable donor cells expressing inward rectifier potassium (Kir2.1) and cardiac sodium (Nav1.5) channels with either weak (conduction velocity=3.1±0.1 cm/s) or strong (conduction velocity=22.1±0.4 cm/s) electrical coupling. Selective prolongation of engineered donor cell AP duration (31.9–139.1 ms) by low-dose BaCl2 generated a wide range of host–donor repolarization time (RT) profiles with maximum gradients (∇RTmax) of 5.5 to 257 ms/mm. During programmed stimulation of donor cells, the vulnerable time window for conduction block across the host–donor interface most strongly correlated with ∇RTmax. Compared with well-coupled donor cells, the interface composed of poorly coupled cells significantly shortened the RT profile width by 19.7% and increased ∇RTmax and vulnerable time window by 22.2% and 19%, respectively. Flattening the RT profile by perfusion of 50 &mgr;mol/L BaCl2 eliminated coupling-induced differences in vulnerability to block. Conclusions—Our results quantify how the degree of electrical mismatch across a cardiomyocyte–donor cell interface affects vulnerability to conduction block, with important implications for the design of safe cardiac cell and gene therapies.


IEEE Engineering in Medicine and Biology Magazine | 2008

Genetic engineering and stem cells: combinatorial approaches for cardiac cell therapy [Cellular/Tissue Engineering]

Robert D. Kirkton; Nenad Bursac

The use of genetic engineering to induce or alter specific protein expression in stem cells has already facilitated research in this field and may, additionally, offer a potential route for designing more efficient cell sources for cardiac repair. As the feasibility of stem cell genetic manipulation has already been proved and as genetic techniques continue to advance, the combinatorial approach for cardiac cell therapy is promising. This review will thus describe the applications of genetic engineering to improve the isolation, selection, and differentiation of stem cells prior to implantation as well as strategies to promote the retention, mobilization, survival, integration, and tracking of stem cells after implantation.

Collaboration


Dive into the Robert D. Kirkton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Russell C. Addis

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge