Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert D. Mitchell is active.

Publication


Featured researches published by Robert D. Mitchell.


Nature Communications | 2014

Molecular traces of alternative social organization in a termite genome

Nicolas Terrapon; Cai Li; Hugh M. Robertson; Lu Ji; Xuehong Meng; Warren Booth; Zhensheng Chen; Christopher P. Childers; Karl M. Glastad; Kaustubh Gokhale; Johannes Gowin; Wulfila Gronenberg; Russell A. Hermansen; Haofu Hu; Brendan G. Hunt; Ann Kathrin Huylmans; Sayed M.S. Khalil; Robert D. Mitchell; Monica Munoz-Torres; Julie A. Mustard; Hailin Pan; Justin T. Reese; Michael E. Scharf; Fengming Sun; Heiko Vogel; Jin Xiao; Wei Yang; Zhikai Yang; Zuoquan Yang; Jiajian Zhou

Although eusociality evolved independently within several orders of insects, research into the molecular underpinnings of the transition towards social complexity has been confined primarily to Hymenoptera (for example, ants and bees). Here we sequence the genome and stage-specific transcriptomes of the dampwood termite Zootermopsis nevadensis (Blattodea) and compare them with similar data for eusocial Hymenoptera, to better identify commonalities and differences in achieving this significant transition. We show an expansion of genes related to male fertility, with upregulated gene expression in male reproductive individuals reflecting the profound differences in mating biology relative to the Hymenoptera. For several chemoreceptor families, we show divergent numbers of genes, which may correspond to the more claustral lifestyle of these termites. We also show similarities in the number and expression of genes related to caste determination mechanisms. Finally, patterns of DNA methylation and alternative splicing support a hypothesized epigenetic regulation of caste differentiation.


Insect Molecular Biology | 2008

Molecular characterization of the major hemelipoglycoprotein in ixodid ticks

Kevin V. Donohue; Sayed M.S. Khalil; Robert D. Mitchell; Daniel E. Sonenshine; R. Michael Roe

The major hemelipoglyco‐carrier protein (CP) found throughout the development of male and female adult American dog ticks, Dermacentor variabilis (Say) was sequenced. DvCP is a single transcript coding for two protein subunits that together contain three motifs: (1) a lipoprotein n‐terminal domain that is a common attribute of proteins that bind lipids, carbohydrates and metals; (2) a domain of unknown function characteristic of proteins with several large open beta sheets; and (3) a von Willebrand factor type D domain near the carboxy‐terminus apparently important for multimerization. These motifs, which are also found in tick vitellogenin, are not shared by heme‐binding proteins studied thus far in other hematophagous insects. DvCP message was highest in fat body and salivary gland but was also found in midgut and ovary tissue. Expression was initiated by blood feeding in virgin females and not by mating, as is typical of tick vitellogenin; and the message was found in fed males at levels similar to part fed, virgin females. CP appears to be highly conserved among the Ixodida. The closest match by BlastP to DvCP is vitellogenin from Caenorhabditis elegans (AAC04423), suggesting that CP is a novel protein. The role of CP in heme sequestration, the evolution of hematophagy and host complementation are discussed.


Journal of Insect Physiology | 2011

Full-length sequence, regulation and developmental studies of a second vitellogenin gene from the American dog tick, Dermacentor variabilis

Sayed M.S. Khalil; Kevin V. Donohue; Deborah M. Thompson; Laura A. Jeffers; Usha Ananthapadmanaban; Daniel E. Sonenshine; Robert D. Mitchell; R. Michael Roe

Vitellogenin (Vg) is the precursor of vitellin (Vn) which is the major yolk protein in eggs. In a previous report, we isolated and characterized the first Vg message from the American dog tick Dermacentor variabilis. In the current study, we describe a second Vg gene from the same tick. The Vg2 cDNA is 5956 nucleotides with a 5775 nt open reading frame coding for 1925 amino acids. The conceptual amino acid translation contains a 16-residues putative signal peptide, N-terminal lipid binding domain and C-terminal von Willebrand factor type D domain present in all known Vgs. Moreover, the amino acid sequence shows a typical GLCG domain and several RXXR cleavage sites present in most isolated Vgs. Tryptic digest-mass fingerprinting of Vg and Vn recognized 11 fragments that exist in the amino acid translation of DvVg2 cDNA. Injection of virgin females with 20 hydroxyecdysone induced DvVg2 expression, vitellogenesis and oviposition. Using RT-PCR, DvVg2 expression was detected only in tick females after mating and feeding to repletion. Northern blot analysis showed that DvVg2 is expressed in fat body and gut cells of vitellogenic females but not in the ovary. DvVg2 expression was not detected in adult fed or unfed males. The characteristics that distinguish Vg from other similar tick storage proteins like the carrier protein, CP (another hemelipoglycoprotein) are discussed.


Journal of Insect Physiology | 2009

Male engorgement factor: Role in stimulating engorgement to repletion in the ixodid tick, Dermacentor variabilis

Kevin V. Donohue; Sayed M.S. Khalil; Elizabeth Ross; Robert D. Mitchell; R. Michael Roe; Daniel E. Sonenshine

Mating in ticks results in profound physiological changes that eventually results in egg production. In the American dog tick, Dermacentor variabilis, mating causes partially blood-fed female ticks to commence rapid engorgement to repletion and eventual detachment from the host and egg laying. The peptidic male pheromone (engorgement factor alpha/beta) transferred to the female during mating is known only from a single tick species, Amblyomma hebraeum, and was shown to consist of two peptides produced in the testis/vas deferens (TVD) and not in the male accessory gland (MAG). In the current study, we obtained 2704bp of sequence data for efalpha from D. variabilis, of 7kb as determined by Northern blot, and show that it is also present in the Southern cattle tick, Rhipicephalus microplus and the deer tick, Ixodes scapularis. Analysis of the male gonad transcriptome by pyrosequencing produced 563,093 reads of which 636 matched with efalpha; none matched with efbeta. No evidence of efbeta orthologs could be found in any publicly available database including the I. scapularis genome. Silencing efalpha in male ticks failed to significantly reduce the engorgement weight of females compared to controls. Injection of sephadex beads, replete female synganglia, fed male MAG, fed male TVD, or replete female vagina/seminal receptacle (VA/SR), separately, failed to initiate feeding to repletion like that found in normally mated females. However, a small percentage of females injected with VA/SR that fed beyond the arbitrary weight for repletion of 300mg, produced brown eggs (an indication of vitellogenin uptake by the oocytes). The greatest effect was observed in female ticks injected with a suspension of MAG and TVD combined; 50% fed to repletion and all of these dropped off from the host and laid brown eggs. The effect was abolished if the aqueous fraction of the MAG/TVD homogenate only was injected suggesting that EF in ticks is a non-secreted membrane-bound or intracellular protein. Overall, these data suggest that EFalpha in D. variabilis is not an engorgement factor.


PLOS ONE | 2016

Mevalonate-Farnesal Biosynthesis in Ticks: Comparative Synganglion Transcriptomics and a New Perspective

Jiwei Zhu; Sayed M.S. Khalil; Robert D. Mitchell; Brooke W. Bissinger; Noble Egekwu; Daniel E. Sonenshine; R. Michael Roe

Juvenile hormone (JH) controls the growth, development, metamorphosis, and reproduction of insects. For many years, the general assumption has been that JH regulates tick and other acarine development and reproduction the same as in insects. Although researchers have not been able to find the common insect JHs in hard and soft tick species and JH applications appear to have no effect on tick development, it is difficult to prove the negative or to determine whether precursors to JH are made in ticks. The tick synganglion contains regions which are homologous to the corpora allata, the biosynthetic source for JH in insects. Next-gen sequencing of the tick synganglion transcriptome was conducted separately in adults of the American dog tick, Dermacentor variabilis, the deer tick, Ixodes scapularis, and the relapsing fever tick, Ornithodoros turicata as a new approach to determine whether ticks can make JH or a JH precursor. All of the enzymes that make up the mevalonate pathway from acetyl-CoA to farnesyl diphosphate (acetoacetyl-CoA thiolase, HMG-S, HMG-R, mevalonate kinase, phosphomevalonate kinase, diphosphomevalonate decarboxylase, and farnesyl diphosphate synthase) were found in at least one of the ticks studied but most were found in all three species. Sequence analysis of the last enzyme in the mevalonate pathway, farnesyl diphosphate synthase, demonstrated conservation of the seven prenyltransferase regions and the aspartate rich motifs within those regions typical of this enzyme. In the JH branch from farnesyl diphosphate to JH III, we found a putative farnesol oxidase used for the conversion of farnesol to farnesal in the synganglion transcriptome of I. scapularis and D. variabilis. Methyltransferases (MTs) that add a methyl group to farnesoic acid to make methyl farnesoate were present in all of the ticks studied with similarities as high as 36% at the amino acid level to insect JH acid methyltransferase (JHAMT). However, when the tick MTs were compared to the known insect JHAMTs from several insect species at the amino acid level, the former lacked the farnesoic acid binding motif typical in insects. The P450s shown in insects to add the C10,11 epoxide to methyl farnesoate, are in the CYP15 family; this family was absent in our tick transcriptomes and in the I. scapularis genome, the only tick genome available. These data suggest that ticks do not synthesize JH III but have the mevalonate pathway and may produce a JH III precursor.


Ticks and Tick-borne Diseases | 2017

Infrared light detection by the haller’s organ of adult american dog ticks, Dermacentor variabilis (Ixodida: Ixodidae)

Robert D. Mitchell; Jiwei Zhu; Ann L. Carr; Anirudh Dhammi; Grayson Cave; Daniel E. Sonenshine; R. Michael Roe

The Hallers organ (HO), unique to ticks and mites, is found only on the first tarsus of the front pair of legs. The organ has an unusual morphology consisting of an anterior pit (AP) with protruding sensilla and a posterior capsule (Cp). The current thinking is that the HOs main function is chemosensation analogous to the insect antennae, but the functionality of its atypical structure (exclusive to the Acari) is unexplained. We provide the first evidence that the HO allows the American dog tick, Dermacentor variabilis, to respond to infrared (IR) light. Unfed D. variabilis adults with their HOs present were positively phototactic to IR. However, when the HOs were removed, no IR response was detected. Ticks in these experiments were also attracted to white light with and without the HOs, but were only positively phototactic to white light when the ocelli (primitive eyes) were unobstructed. Covering the eyes did not prevent IR attraction. A putative TRPA1 receptor was characterized from a D. variabilis-specific HO transcriptome we constructed. This receptor was homologous to transient receptor potential cation channel, subfamily A, member 1 (TRPA1) from the pit organ of the pit viper, python, and boa families of snakes, the only receptor identified so far for IR detection. HO scanning electron microscopy (SEM) studies in the American dog tick showed the AP and Cp but also novel structures not previously described; the potential role of these structures in IR detection is discussed. The ability of ticks to use IR for host finding is consistent with their obligatory hematophagy and has practical applications in tick trapping and the development of new repellents.


International Journal of Molecular Sciences | 2017

Tick Haller’s Organ, a New Paradigm for Arthropod Olfaction: How Ticks Differ from Insects

Ann L. Carr; Robert D. Mitchell; Anirudh Dhammi; Brooke W. Bissinger; Daniel E. Sonenshine; R. Michael Roe

Ticks are the vector of many human and animal diseases; and host detection is critical to this process. Ticks have a unique sensory structure located exclusively on the 1st pairs of legs; the fore-tarsal Haller’s organ, not found in any other animals, presumed to function like the insect antennae in chemosensation but morphologically very different. The mechanism of tick chemoreception is unknown. Utilizing next-generation sequencing and comparative transcriptomics between the 1st and 4th legs (the latter without the Haller’s organ), we characterized 1st leg specific and putative Haller’s organ specific transcripts from adult American dog ticks, Dermacentor variabilis. The analysis suggested that the Haller’s organ is involved in olfaction, not gustation. No known odorant binding proteins like those found in insects, chemosensory lipocalins or typical insect olfactory mechanisms were identified; with the transcriptomic data only supporting a possible olfactory G-protein coupled receptor (GPCR) signal cascade unique to the Haller’s organ. Each component of the olfactory GPCR signal cascade was identified and characterized. The expression of GPCR, Gαo and β-arrestin transcripts identified exclusively in the 1st leg transcriptome, and putatively Haller’s organ specific, were examined in unfed and blood-fed adult female and male D. variabilis. Blood feeding to repletion in adult females down-regulated the expression of all three chemosensory transcripts in females but not in males; consistent with differences in post-feeding tick behavior between sexes and an expected reduced chemosensory function in females as they leave the host. Data are presented for the first time of the potential hormonal regulation of tick chemosensation; behavioral assays confirmed the role of the Haller’s organ in N,N-diethyl-meta-toluamide (DEET) repellency but showed no role for the Haller’s organ in host attachment. Further research is needed to understand the potential role of the GPCR cascade in olfaction.


Journal of Biochemical and Molecular Toxicology | 2016

Impact of Environmental Chemicals on the Transcriptome of Primary Human Hepatocytes: Potential for Health Effects

Robert D. Mitchell; Anirudh Dhammi; Andrew D. Wallace; Ernest Hodgson; R. Michael Roe

New paradigms for human health risk assessment of environmental chemicals emphasize the use of molecular methods and human‐derived cell lines. In this study, we examined the effects of the insect repellent DEET (N,N‐diethyl‐m‐toluamide) and the phenylpyrazole insecticide fipronil (fluocyanobenpyrazole) on transcript levels in primary human hepatocytes. These chemicals were tested individually and as a mixture. RNA‐Seq showed that 100 μM DEET significantly increased transcript levels (α = 0.05) for 108 genes and lowered transcript levels for 64 genes and fipronil at 10 μM increased the levels of 2246 transcripts and decreased the levels for 1428 transcripts. Fipronil was 21‐times more effective than DEET in eliciting changes, even though the treatment concentration was 10‐fold lower for fipronil versus DEET. The mixture of DEET and fipronil produced a more than additive effect (levels increased for 3017 transcripts and decreased for 2087 transcripts). The transcripts affected for all chemical treatments were classified by GO analysis and mapped to chromosomes. The overall treatment responses, specific pathways, and individual transcripts affected were discussed at different levels of fold‐change. Changes found in transcript levels in response to treatments will require further research to understand their importance in overall cellular, organ, and organismic function.


International Journal of Molecular Sciences | 2017

Differential Expression Profile of lncRNAs from Primary Human Hepatocytes Following DEET and Fipronil Exposure

Robert D. Mitchell; Andrew D. Wallace; Ernest Hodgson; R. Michael Roe

While the synthesis and use of new chemical compounds is at an all-time high, the study of their potential impact on human health is quickly falling behind, and new methods are needed to assess their impact. We chose to examine the effects of two common environmental chemicals, the insect repellent N,N-diethyl-m-toluamide (DEET) and the insecticide fluocyanobenpyrazole (fipronil), on transcript levels of long non-protein coding RNAs (lncRNAs) in primary human hepatocytes using a global RNA-Seq approach. While lncRNAs are believed to play a critical role in numerous important biological processes, many still remain uncharacterized, and their functions and modes of action remain largely unclear, especially in relation to environmental chemicals. RNA-Seq showed that 100 µM DEET significantly increased transcript levels for 2 lncRNAs and lowered transcript levels for 18 lncRNAs, while fipronil at 10 µM increased transcript levels for 76 lncRNAs and decreased levels for 193 lncRNAs. A mixture of 100 µM DEET and 10 µM fipronil increased transcript levels for 75 lncRNAs and lowered transcript levels for 258 lncRNAs. This indicates a more-than-additive effect on lncRNA transcript expression when the two chemicals were presented in combination versus each chemical alone. Differentially expressed lncRNA genes were mapped to chromosomes, analyzed by proximity to neighboring protein-coding genes, and functionally characterized via gene ontology and molecular mapping algorithms. While further testing is required to assess the organismal impact of changes in transcript levels, this initial analysis links several of the dysregulated lncRNAs to processes and pathways critical to proper cellular function, such as the innate and adaptive immune response and the p53 signaling pathway.


Insect Biochemistry and Molecular Biology | 2007

Molecular characterization, tissue-specific expression and RNAi knockdown of the first vitellogenin receptor from a tick

Robert D. Mitchell; Elizabeth Ross; Christopher Osgood; Daniel E. Sonenshine; Kevin V. Donohue; Sayed M.S. Khalil; Deborah M. Thompson; R. Michael Roe

Collaboration


Dive into the Robert D. Mitchell's collaboration.

Top Co-Authors

Avatar

R. Michael Roe

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sayed M.S. Khalil

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Deborah M. Thompson

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Kevin V. Donohue

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Anirudh Dhammi

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura A. Jeffers

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Wallace

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Ann L. Carr

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge