Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert D. Moir is active.

Publication


Featured researches published by Robert D. Moir.


Neuron | 2001

Treatment with a Copper-Zinc Chelator Markedly and Rapidly Inhibits β-Amyloid Accumulation in Alzheimer's Disease Transgenic Mice

Robert A. Cherny; Craig S. Atwood; Michel Xilinas; Danielle N. Gray; Walton D Jones; Catriona McLean; Kevin J. Barnham; Irene Volitakis; Fiona W. Fraser; Youngseon Kim; Xudong Huang; Lee E. Goldstein; Robert D. Moir; James Lim; Konrad Beyreuther; Hui Zheng; Rudolph E. Tanzi; Colin L. Masters; Ashley I. Bush

Inhibition of neocortical beta-amyloid (Abeta) accumulation may be essential in an effective therapeutic intervention for Alzheimers disease (AD). Cu and Zn are enriched in Abeta deposits in AD, which are solubilized by Cu/Zn-selective chelators in vitro. Here we report a 49% decrease in brain Abeta deposition (-375 microg/g wet weight, p = 0.0001) in a blinded study of APP2576 transgenic mice treated orally for 9 weeks with clioquinol, an antibiotic and bioavailable Cu/Zn chelator. This was accompanied by a modest increase in soluble Abeta (1.45% of total cerebral Abeta); APP, synaptophysin, and GFAP levels were unaffected. General health and body weight parameters were significantly more stable in the treated animals. These results support targeting the interactions of Cu and Zn with Abeta as a novel therapy for the prevention and treatment of AD.


Journal of Biological Chemistry | 1998

DRAMATIC AGGREGATION OF ALZHEIMER ABETA BY CU(II) IS INDUCED BY CONDITIONS REPRESENTING PHYSIOLOGICAL ACIDOSIS

Craig S. Atwood; Robert D. Moir; Xudong Huang; R. C. Scarpa; N. M. E. Bacarra; Donna M. Romano; Mariana A. Hartshorn; Rudolph E. Tanzi; Ashley I. Bush

The cortical deposition of Aβ is an event that occurs in Alzheimer’s disease, Down’s syndrome, head injury, and normal aging. Previously, in appraising the effects of different neurochemical factors that impact upon the solubility of Aβ, we observed that Zn2+ was the predominant bioessential metal to induce the aggregation of soluble Aβ at pH 7.4 in vitro and that this reaction is totally reversible with chelation. We now report that unlike other biometals tested at maximal biological concentrations, marked Cu2+-induced aggregation of Aβ1–40 emerged as the solution pH was lowered from 7.4 to 6.8 and that the reaction was completely reversible with either chelation or alkalinization. This interaction was comparable to the pH-dependent effect of Cu2+ on insulin aggregation but was not seen for aprotinin or albumin. Aβ1–40 bound three to four Cu2+ ions when precipitated at pH 7.0. Rapid, pH-sensitive aggregation occurred at low nanomolar concentrations of both Aβ1–40 and Aβ1–42 with submicromolar concentrations of Cu2+. Unlike Aβ1–40, Aβ1–42was precipitated by submicromolar Cu2+ concentrations at pH 7.4. Rat Aβ1–40 and histidine-modified human Aβ1–40 were not aggregated by Zn2+, Cu2+, or Fe3+, indicating that histidine residues are essential for metal-mediated Aβ assembly. These results indicate that H+-induced conformational changes unmask a metal-binding site on Aβ that mediates reversible assembly of the peptide. Since a mildly acidic environment together with increased Zn2+ and Cu2+ are common features of inflammation, we propose that Aβ aggregation by these factors may be a response to local injury. Cu2+, Zn2+, and Fe3+ association with Aβ explains the recently reported enrichment of these metal ions in amyloid plaques in Alzheimer’s disease.


Journal of Biological Chemistry | 1999

Cu(II) Potentiation of Alzheimer Aβ Neurotoxicity CORRELATION WITH CELL-FREE HYDROGEN PEROXIDE PRODUCTION AND METAL REDUCTION

Xudong Huang; Math P. Cuajungco; Craig S. Atwood; Mariana A. Hartshorn; Joel D. A. Tyndall; Graeme R. Hanson; Karen C. Stokes; Michael C. Leopold; Gerd Multhaup; Lee E. Goldstein; Richard C. Scarpa; Aleister J. Saunders; James T. Lim; Robert D. Moir; Charles G. Glabe; Edmond F. Bowden; Colin L. Masters; David P. Fairlie; Rudolph E. Tanzi; Ashley I. Bush

Oxidative stress markers as well as high concentrations of copper are found in the vicinity of Aβ amyloid deposits in Alzheimers disease. The neurotoxicity of Aβ in cell culture has been linked to H2O2generation by an unknown mechanism. We now report that Cu(II) markedly potentiates the neurotoxicity exhibited by Aβ in cell culture. The potentiation of toxicity is greatest for Aβ1–42 > Aβ1–40 ≫ mouse/rat Aβ1–40, corresponding to their relative capacities to reduce Cu(II) to Cu(I), form H2O2 in cell-free assays and to exhibit amyloid pathology. The copper complex of Aβ1–42 has a highly positive formal reduction potential (≈+500–550 mV versus Ag/AgCl) characteristic of strongly reducing cuproproteins. These findings suggest that certain redox active metal ions may be important in exacerbating and perhaps facilitating Aβ-mediated oxidative damage in Alzheimers disease.


Journal of Neurochemistry | 2008

Characterization of copper interactions with alzheimer amyloid β peptides : Identification of an attomolar-affinity copper binding site on amyloid β1-42

Craig S. Atwood; Richard C. Scarpa; Xudong Huang; Robert D. Moir; Walton D. Jones; David P. Fairlie; Rudolph E. Tanzi; Ashley I. Bush

Abstract: Cu and Zn have been shown to accumulate in the brains of Alzheimers disease patients. We have previously reported that Cu2+ and Zn2+ bind amyloid β (Aβ), explaining their enrichment in plaque pathology. Here we detail the stoichiometries and binding affinities of multiple cooperative Cu2+‐binding sites on synthetic Aβ1‐40 and Aβ1‐42. We have developed a ligand displacement technique (competitive metal capture analysis) that uses metal‐chelator complexes to evaluate metal ion binding to Aβ, a notoriously self‐aggregating peptide. This analysis indicated that there is a very‐high‐affinity Cu2+‐binding site on Aβ1‐42 (log Kapp = 17.2) that mediates peptide precipitation and that the tendency of this peptide to self‐aggregate in aqueous solutions is due to the presence of trace Cu2+ contamination (customarily ∼0.1 μM). In contrast, Aβ1‐40 has much lower affinity for Cu2+ at this site (estimated log Kapp = 10.3), explaining why this peptide is less self‐aggregating. The greater Cu2+‐binding affinity of Aβ1‐42 compared with Aβ1‐40 is associated with significantly diminished negative cooperativity. The role of trace metal contamination in inducing Aβ precipitation was confirmed by the demonstration that Aβ peptide (10 μM) remained soluble for 5 days only in the presence of high‐affinity Cu2+‐selective chelators.


Journal of Biological Chemistry | 2002

Metalloenzyme-like Activity of Alzheimer's Disease β-Amyloid Cu-DEPENDENT CATALYTIC CONVERSION OF DOPAMINE, CHOLESTEROL, AND BIOLOGICAL REDUCING AGENTS TO NEUROTOXIC H2O2

Carlos Opazo; Xudong Huang; Robert A. Cherny; Robert D. Moir; Alex E. Roher; Anthony R. White; Roberto Cappai; Colin L. Masters; Rudolph E. Tanzi; Nibaldo C. Inestrosa; Ashley I. Bush

β-Amyloid (Aβ) 1–42, implicated in the pathogenesis of Alzheimers disease, forms an oligomeric complex that binds copper at a CuZn superoxide dismutase-like binding site. Aβ·Cu complexes generate neurotoxic H2O2 from O2 through Cu2+ reduction, but the reaction mechanism has been unclear. We now report that Aβ1–42, when binding up to 2 eq of Cu2+, generates the H2O2catalytically by recruiting biological reducing agents as substrates under conditions where the Cu2+ or reducing agents will not form H2O2 themselves. Cholesterol is an important substrate for this activity, as are vitamin C,l-DOPA, and dopamine (V maxfor dopamine = 34.5 nm/min, K m = 8.9 μm). The activity was inhibited by anti-Aβ antibodies, Cu2+ chelators, and Zn2+. Toxicity of Aβ in neuronal culture was consistent with catalytic H2O2 production. Aβ was not toxic in cell cultures in the absence of Cu2+, and dopamine (5 μm) markedly exaggerated the neurotoxicity of 200 nm Aβ1–42·Cu. Therefore, microregional catalytic H2O2 production, combined with the exhaustion of reducing agents, may mediate the neurotoxicity of Aβ in Alzheimers disease, and inhibitors of this novel activity may be of therapeutic value.


Cell | 1995

LDL receptor-related protein, a multifunctional ApoE receptor, binds secreted β-amyloid precursor protein and mediates its degradation

Maria Z. Kounnas; Robert D. Moir; G. William Rebeck; Ashley I. Bush; W. Scott Argraves; Rudolph E. Tanzi; Bradley T. Hyman; Dudley K. Strickland

The secreted form of beta-amyloid precursor protein (APP) containing the Kunitz proteinase inhibitor (KPI) domain, also called protease nexin II, is internalized and degraded by cells. We show that the low density lipoprotein (LDL) receptor-related protein (LRP) is responsible for the endocytosis of secreted APP. APPs770 degradation is inhibited by an LRP antagonist called the receptor-associated protein (RAP) and by LRP antibodies and is greatly diminished in fibroblasts genetically deficient in LRP. APPs695, which lacks the KPI domain, is a poor LRP ligand. Since LRP also binds apolipoprotein E (apoE)-enriched lipoproteins and inheritance of the epsilon 4 allele of the apoE gene is a risk factor for Alzheimers disease (AD), these data link in a single metabolic pathway two molecules strongly implicated in the pathophysiology of AD.


Science Translational Medicine | 2012

Chronic Traumatic Encephalopathy in Blast-Exposed Military Veterans and a Blast Neurotrauma Mouse Model

Lee E. Goldstein; Andrew Fisher; Chad Tagge; Xiao-lei Zhang; Libor Velíšek; John Sullivan; Chirag Upreti; Jonathan M. Kracht; Maria Ericsson; Mark Wojnarowicz; Cezar Goletiani; Giorgi Maglakelidze; Noel Casey; Juliet A. Moncaster; Olga Minaeva; Robert D. Moir; Christopher J. Nowinski; Robert A. Stern; Robert C. Cantu; James Geiling; Jan Krzysztof Blusztajn; Benjamin Wolozin; Tsuneya Ikezu; Thor D. Stein; Andrew E. Budson; Neil W. Kowall; David Chargin; Andre Sharon; Sudad Saman; Garth F. Hall

Blast exposure is associated with chronic traumatic encephalopathy, impaired neuronal function, and persistent cognitive deficits in blast-exposed military veterans and experimental animals. Blast Brain: An Invisible Injury Revealed Traumatic brain injury (TBI) is the “signature” injury of the conflicts in Afghanistan and Iraq and is associated with psychiatric symptoms and long-term cognitive disability. Recent estimates indicate that TBI may affect 20% of the 2.3 million U.S. servicemen and women deployed since 2001. Chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disorder reported in athletes with multiple concussions, shares clinical features with TBI in military personnel exposed to explosive blast. However, the connection between TBI and CTE has not been explored in depth. In a new study, Goldstein et al. investigate this connection in the first case series of postmortem brains from U.S. military veterans with blast exposure and/or concussive injury. They report evidence for CTE neuropathology in the military veteran brains that is similar to that observed in the brains of young amateur American football players and a professional wrestler. The investigators developed a mouse model of blast neurotrauma that mimics typical blast conditions associated with military blast injury and discovered that blast-exposed mice also demonstrate CTE neuropathology, including tau protein hyperphosphorylation, myelinated axonopathy, microvascular damage, chronic neuroinflammation, and neurodegeneration. Surprisingly, blast-exposed mice developed CTE neuropathology within 2 weeks after exposure to a single blast. In addition, the neuropathology was accompanied by functional deficits, including slowed axonal conduction, reduced activity-dependent long-term synaptic plasticity, and impaired spatial learning and memory that persisted for 1 month after exposure to a single blast. The investigators then showed that blast winds with velocities of more than 330 miles/hour—greater than the most intense wind gust ever recorded on earth—induced oscillating head acceleration of sufficient intensity to injure the brain. The researchers then demonstrated that blast-induced learning and memory deficits in the mice were reduced by immobilizing the head during blast exposure. These findings provide a direct connection between blast TBI and CTE and indicate a primary role for blast wind–induced head acceleration in blast-related neurotrauma and its aftermath. This study also validates a new blast neurotrauma mouse model that will be useful for developing new diagnostics, therapeutics, and rehabilitative strategies for treating blast-related TBI and CTE. Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.


Neuron | 1992

The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth.

Elizabeth A. Milward; Roula Papadopoulos; Stephanie J. Fuller; Robert D. Moir; David H. Small; Konrad Beyreuther; Colin L. Masters

The beta A4 protein, the major component of the amyloid deposition characterizing Alzheimers disease, derives from the amyloid protein precursor (APP), an integral membrane protein with soluble derivatives. The function of APP is unknown. Both soluble and membrane-associated human brain APP (10(-10) M) significantly increased (P less than 0.025) neurite length and branching in pheochromocytoma PC12 cells, but did not affect the number of neurites per cell. At higher concentrations, APP was cytotoxic, with a half-maximal concentration of 5 x 10(-9) M. Nerve growth factor (NGF) is known to affect APP expression in vivo and in vitro. Antibodies to APP specifically diminished the effects of NGF on neurite length and branching. Thus APP may act to mediate neurite outgrowth promotion by NGF.


PLOS ONE | 2010

The Alzheimer's Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide

Stephanie J. Soscia; James E. Kirby; Kevin J. Washicosky; Stephanie Tucker; Martin Ingelsson; Bradley T. Hyman; Mark A. Burton; Lee E. Goldstein; Scott Duong; Rudolph E. Tanzi; Robert D. Moir

Background The amyloid β-protein (Aβ) is believed to be the key mediator of Alzheimers disease (AD) pathology. Aβ is most often characterized as an incidental catabolic byproduct that lacks a normal physiological role. However, Aβ has been shown to be a specific ligand for a number of different receptors and other molecules, transported by complex trafficking pathways, modulated in response to a variety of environmental stressors, and able to induce pro-inflammatory activities. Methodology/Principal Findings Here, we provide data supporting an in vivo function for Aβ as an antimicrobial peptide (AMP). Experiments used established in vitro assays to compare antimicrobial activities of Aβ and LL-37, an archetypical human AMP. Findings reveal that Aβ exerts antimicrobial activity against eight common and clinically relevant microorganisms with a potency equivalent to, and in some cases greater than, LL-37. Furthermore, we show that AD whole brain homogenates have significantly higher antimicrobial activity than aged matched non-AD samples and that AMP action correlates with tissue Aβ levels. Consistent with Aβ-mediated activity, the increased antimicrobial action was ablated by immunodepletion of AD brain homogenates with anti-Aβ antibodies. Conclusions/Significance Our findings suggest Aβ is a hitherto unrecognized AMP that may normally function in the innate immune system. This finding stands in stark contrast to current models of Aβ-mediated pathology and has important implications for ongoing and future AD treatment strategies.


Cell | 2010

Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease.

James A. Duce; Andrew Tsatsanis; Michael A. Cater; Simon A. James; Elysia Robb; Krutika Wikhe; Su Ling Leong; Keyla Perez; Timothy Johanssen; Mark Greenough; Hyun-Hee Cho; Denise Galatis; Robert D. Moir; Colin L. Masters; Catriona McLean; Rudolph E. Tanzi; Roberto Cappai; Kevin J. Barnham; Giuseppe D. Ciccotosto; Jack T. Rogers; Ashley I. Bush

Alzheimers Disease (AD) is complicated by pro-oxidant intraneuronal Fe(2+) elevation as well as extracellular Zn(2+) accumulation within amyloid plaque. We found that the AD β-amyloid protein precursor (APP) possesses ferroxidase activity mediated by a conserved H-ferritin-like active site, which is inhibited specifically by Zn(2+). Like ceruloplasmin, APP catalytically oxidizes Fe(2+), loads Fe(3+) into transferrin, and has a major interaction with ferroportin in HEK293T cells (that lack ceruloplasmin) and in human cortical tissue. Ablation of APP in HEK293T cells and primary neurons induces marked iron retention, whereas increasing APP695 promotes iron export. Unlike normal mice, APP(-/-) mice are vulnerable to dietary iron exposure, which causes Fe(2+) accumulation and oxidative stress in cortical neurons. Paralleling iron accumulation, APP ferroxidase activity in AD postmortem neocortex is inhibited by endogenous Zn(2+), which we demonstrate can originate from Zn(2+)-laden amyloid aggregates and correlates with Aβ burden. Abnormal exchange of cortical zinc may link amyloid pathology with neuronal iron accumulation in AD.

Collaboration


Dive into the Robert D. Moir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley I. Bush

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig S. Atwood

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge