Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert D. Reed is active.

Publication


Featured researches published by Robert D. Reed.


Nature | 2012

Butterfly genome reveals promiscuous exchange of mimicry adaptations among species

Kanchon K. Dasmahapatra; James R. Walters; Adriana D. Briscoe; John W. Davey; Annabel Whibley; Nicola J. Nadeau; Aleksey V. Zimin; Daniel S.T. Hughes; Laura Ferguson; Simon H. Martin; Camilo Salazar; James J. Lewis; Sebastian Adler; Seung-Joon Ahn; Dean A. Baker; Simon W. Baxter; Nicola Chamberlain; Ritika Chauhan; Brian A. Counterman; Tamas Dalmay; Lawrence E. Gilbert; Karl H.J. Gordon; David G. Heckel; Heather M. Hines; Katharina Hoff; Peter W. H. Holland; Emmanuelle Jacquin-Joly; Francis M. Jiggins; Robert T. Jones; Durrell D. Kapan

The evolutionary importance of hybridization and introgression has long been debated. Hybrids are usually rare and unfit, but even infrequent hybridization can aid adaptation by transferring beneficial traits between species. Here we use genomic tools to investigate introgression in Heliconius, a rapidly radiating genus of neotropical butterflies widely used in studies of ecology, behaviour, mimicry and speciation. We sequenced the genome of Heliconius melpomene and compared it with other taxa to investigate chromosomal evolution in Lepidoptera and gene flow among multiple Heliconius species and races. Among 12,669 predicted genes, biologically important expansions of families of chemosensory and Hox genes are particularly noteworthy. Chromosomal organization has remained broadly conserved since the Cretaceous period, when butterflies split from the Bombyx (silkmoth) lineage. Using genomic resequencing, we show hybrid exchange of genes between three co-mimics, Heliconius melpomene, Heliconius timareta and Heliconius elevatus, especially at two genomic regions that control mimicry pattern. We infer that closely related Heliconius species exchange protective colour-pattern genes promiscuously, implying that hybridization has an important role in adaptive radiation.


Science | 2011

optix Drives the Repeated Convergent Evolution of Butterfly Wing Pattern Mimicry

Robert D. Reed; Riccardo Papa; Arnaud Martin; Heather M. Hines; Brian A. Counterman; Carolina Pardo-Diaz; Chris D. Jiggins; Nicola Chamberlain; Marcus R. Kronforst; Rui Chen; Georg Halder; H. Frederik Nijhout; W. Owen McMillan

Heliconius butterfly wing pattern mimicry is driven by cis-regulatory variation of the optix gene. Mimicry—whereby warning signals in different species evolve to look similar—has long served as a paradigm of convergent evolution. Little is known, however, about the genes that underlie the evolution of mimetic phenotypes or to what extent the same or different genes drive such convergence. Here, we characterize one of the major genes responsible for mimetic wing pattern evolution in Heliconius butterflies. Mapping, gene expression, and population genetic work all identify a single gene, optix, that controls extreme red wing pattern variation across multiple species of Heliconius. Our results show that the cis-regulatory evolution of a single transcription factor can repeatedly drive the convergent evolution of complex color patterns in distantly related species, thus blurring the distinction between convergence and homology.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Diversification of complex butterfly wing patterns by repeated regulatory evolution of a Wnt ligand

Arnaud Martin; Riccardo Papa; Nicola J. Nadeau; Ryan I. Hill; Brian A. Counterman; Georg Halder; Chris D. Jiggins; Marcus R. Kronforst; Anthony D. Long; W. Owen McMillan; Robert D. Reed

Although animals display a rich variety of shapes and patterns, the genetic changes that explain how complex forms arise are still unclear. Here we take advantage of the extensive diversity of Heliconius butterflies to identify a gene that causes adaptive variation of black wing patterns within and between species. Linkage mapping in two species groups, gene-expression analysis in seven species, and pharmacological treatments all indicate that cis-regulatory evolution of the WntA ligand underpins discrete changes in color pattern features across the Heliconius genus. These results illustrate how the direct modulation of morphogen sources can generate a wide array of unique morphologies, thus providing a link between natural genetic variation, pattern formation, and adaptation.


Systematic Biology | 2001

A Partitioned Likelihood Analysis of Swallowtail Butterfly Phylogeny (Lepidoptera: Papilionidae)

Michael S. Caterino; Robert D. Reed; May M. Kuo; Felix A. H. Sperling

Although it is widely agreed that data from multiple sources are necessary to confidently resolve phylogenetic relationships, procedures for accommodating and incorporating heterogeneity in such data remain underdeveloped. We explored the use of partitioned, model-based analyses of heterogeneous molecular data in the context of a phylogenetic study of swallowtail butterflies (Lepidoptera: Papilionidae). Despite substantial basic and applied study, phylogenetic relationships among the major lineages of this prominent group remain contentious. We sequenced 3.3 kb of mitochondrial and nuclear DNA (2.3 kb of cytochrome oxidase I and II and 1.0 kb of elongation factor-1 alpha, respectively) from 22 swallowtails, including representatives of Baroniinae, Parnassiinae, and Papilioninae, and from several moth and butterfly outgroups. Using parsimony, we encountered considerable difficulty in resolving the deepest splits among these taxa. We therefore chose two outgroups with undisputed relationships to each other and to Papilionidae and undertook detailed likelihood analyses of alternative topologies. Following from previous studies that have demonstrated substantial heterogeneity in the evolutionary dynamics among process partitions of these genes, we estimated evolutionary parameters separately for gene-based and codon-based partitions. These values were then used as the basis for examining the likelihoods of possible resolutions and rootings under several partitioned and unpartitioned likelihood models. Partitioned models gave markedly better fits to the data than did unpartitioned models and supported different topologies. However, the most likely topology varied from model to model. The most likely ingroup topology under the best-fitting, six-partition GTR + gamma model favors a paraphyletic Parnassiinae. However, when examining the likelihoods of alternative rootings of this tree relative to rootings of the classical hypothesis, two rootings of the latter emerge as most likely. Of these two, the most likely rooting is within the Papilioninae, although a rooting between Baronia and the remaining Papilionidae is only nonsignificantly less likely.


PLOS Genetics | 2010

Genomic Hotspots for Adaptation: The Population Genetics of Mullerian Mimicry in Heliconius erato

Brian A. Counterman; Félix Araujo-Pérez; Heather M. Hines; Simon W. Baxter; Clay Morrison; Daniel P. Lindstrom; Riccardo Papa; Laura Ferguson; Mathieu Joron; Richard H. ffrench-Constant; Chris Smith; Dahlia M. Nielsen; Rui Chen; Chris D. Jiggins; Robert D. Reed; Georg Halder; James Mallet; W. Owen McMillan

Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as “supergenes.” Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies.

Adriana D. Briscoe; Seth M. Bybee; Gary D. Bernard; Furong Yuan; Marilou P. Sison-Mangus; Robert D. Reed; Andrew D. Warren; Jorge Llorente-Bousquets; Chuan-Chin Chiao

The butterfly Heliconius erato can see from the UV to the red part of the light spectrum with color vision proven from 440 to 640 nm. Its eye is known to contain three visual pigments, rhodopsins, produced by an 11-cis-3-hydroxyretinal chromophore together with long wavelength (LWRh), blue (BRh) and UV (UVRh1) opsins. We now find that H. erato has a second UV opsin mRNA (UVRh2)—a previously undescribed duplication of this gene among Lepidoptera. To investigate its evolutionary origin, we screened eye cDNAs from 14 butterfly species in the subfamily Heliconiinae and found both copies only among Heliconius. Phylogeny-based tests of selection indicate positive selection of UVRh2 following duplication, and some of the positively selected sites correspond to vertebrate visual pigment spectral tuning residues. Epi-microspectrophotometry reveals two UV-absorbing rhodopsins in the H. erato eye with λmax = 355 nm and 398 nm. Along with the additional UV opsin, Heliconius have also evolved 3-hydroxy-DL-kynurenine (3-OHK)-based yellow wing pigments not found in close relatives. Visual models of how butterflies perceive wing color variation indicate this has resulted in an expansion of the number of distinguishable yellow colors on Heliconius wings. Functional diversification of the UV-sensitive visual pigments may help explain why the yellow wing pigments of Heliconius are so colorful in the UV range compared to the yellow pigments of close relatives lacking the UV opsin duplicate.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Wing patterning gene redefines the mimetic history of Heliconius butterflies

Heather M. Hines; Brian A. Counterman; Riccardo Papa; Priscila Albuquerque de Moura; Márcio Zikán Cardoso; Mauricio Linares; James Mallet; Robert D. Reed; Chris D. Jiggins; Marcus R. Kronforst; W. Owen McMillan

The mimetic butterflies Heliconius erato and Heliconius melpomene have undergone parallel radiations to form a near-identical patchwork of over 20 different wing-pattern races across the Neotropics. Previous molecular phylogenetic work on these radiations has suggested that similar but geographically disjunct color patterns arose multiple times independently in each species. The neutral markers used in these studies, however, can move freely across color pattern boundaries, and therefore might not represent the history of the adaptive traits as accurately as markers linked to color pattern genes. To assess the evolutionary histories across different loci, we compared relationships among races within H. erato and within H. melpomene using a series of unlinked genes, genes linked to color pattern loci, and optix, a gene recently shown to control red color-pattern variation. We found that although unlinked genes partition populations by geographic region, optix had a different history, structuring lineages by red color patterns and supporting a single origin of red-rayed patterns within each species. Genes closely linked (80–250 kb) to optix exhibited only weak associations with color pattern. This study empirically demonstrates the necessity of examining phenotype-determining genomic regions to understand the history of adaptive change in rapidly radiating lineages. With these refined relationships, we resolve a long-standing debate about the origins of the races within each species, supporting the hypothesis that the red-rayed Amazonian pattern evolved recently and expanded, causing disjunctions of more ancestral patterns.


Evolution & Development | 2005

Evolutionary redeployment of a biosynthetic module: expression of eye pigment genes vermilion, cinnabar, and white in butterfly wing development

Robert D. Reed; Lisa M. Nagy

Summary Ommochromes are common among insects as visual pigments; however, in some insect lineages ommochromes have evolved novel functions such as integument coloration and tryptophan secretion. One role of ommochromes, as butterfly wing pigments, can apparently be traced to a single origin in the family Nymphalidae. The synthesis and storage of ommochrome pigments is a complex process that requires the concerted activity of multiple enzyme and transporter molecules. To help understand how this subcellular process appeared in a novel context during evolution, we explored aspects of ommochrome pigment development in the wings of the nymphalid butterfly Vanessa cardui. Using chromatography and radiolabeled precursor incorporation studies we identified the ommochrome xanthommatin as a V. cardui wing pigment. We cloned fragments of two ommochrome enzyme genes, vermilion and cinnabar, and an ommochrome precursor transporter gene, white, and found that these genes were transcribed in wing tissue at relatively high levels during wing scale development. Unexpectedly, however, the spatial patterns of transcription were not associated in a simple way with adult pigment patterns. Although our results suggest that the evolution of ommochrome synthesis in butterfly wings likely arose in part through novel regulation of vermilion, cinnabar, and white transcription, they also point to a complex relationship between transcriptional prepatterns and pigment synthesis in V. cardui.


Genetics | 2006

Localization of Müllerian Mimicry Genes on a Dense Linkage Map of Heliconius erato

Durrell D. Kapan; Nicola S. Flanagan; Alexandra Tobler; Riccardo Papa; Robert D. Reed; Jenny Acevedo Gonzalez; Manuel Ramirez Restrepo; Lournet Martinez; Karla Maldonado; Clare Ritschoff; David G. Heckel; W. Owen McMillan

We report a dense genetic linkage map of Heliconius erato, a neotropical butterfly that has undergone a remarkable adaptive radiation in warningly colored mimetic wing patterns. Our study exploited natural variation segregating in a cross between H. erato etylus and H. himera to localize wing color pattern loci on a dense linkage map containing amplified fragment length polymorphisms (AFLP), microsatellites, and single-copy nuclear loci. We unambiguously identified all 20 autosomal linkage groups and the sex chromosome (Z). The map spanned a total of 1430 Haldane cM and linkage groups varied in size from 26.3 to 97.8 cM. The average distance between markers was 5.1 cM. Within this framework, we localized two major color pattern loci to narrow regions of the genome. The first gene, D, responsible for red/orange elements, had a most likely placement in a 6.7-cM region flanked by two AFLP markers on the end of a large 87.5-cM linkage group. The second locus, Sd, affects the melanic pattern on the forewing and was found within a 6.3-cM interval between flanking AFLP loci. This study complements recent linkage analysis of H. eratos comimic, H. melpomene, and forms the basis for marker-assisted physical mapping and for studies into the comparative genetic architecture of wing-pattern mimicry in Heliconius.


Proceedings of the Royal Society of London B: Biological Sciences | 2008

Gene expression underlying adaptive variation in Heliconius wing patterns: non-modular regulation of overlapping cinnabar and vermilion prepatterns.

Robert D. Reed; W. Owen McMillan; Lisa M. Nagy

Geographical variation in the mimetic wing patterns of the butterfly Heliconius erato is a textbook example of adaptive polymorphism; however, little is known about how this variation is controlled developmentally. Using microarrays and qPCR, we identified and compared expression of candidate genes potentially involved with a red/yellow forewing band polymorphism in H. erato. We found that transcripts encoding the pigment synthesis enzymes cinnabar and vermilion showed pattern- and polymorphism-related expression patterns, respectively. cinnabar expression was associated with the forewing band regardless of pigment colour, providing the first gene expression pattern known to be correlated with a major Heliconius colour pattern. In contrast, vermilion expression changed spatially over time in red-banded butterflies, but was not expressed at detectable levels in yellow-banded butterflies, suggesting that regulation of this gene may be involved with the red/yellow polymorphism. Furthermore, we found that the yellow pigment, 3-hydroxykynurenine, is incorporated into wing scales from the haemolymph rather than being synthesized in situ. We propose that some aspects of Heliconius colour patterns are determined by spatio-temporal overlap of pigment gene transcription prepatterns and speculate that evolutionary changes in vermilion regulation may in part underlie an adaptive colour pattern polymorphism.

Collaboration


Dive into the Robert D. Reed's collaboration.

Top Co-Authors

Avatar

Brian A. Counterman

Mississippi State University

View shared research outputs
Top Co-Authors

Avatar

W. Owen McMillan

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arnaud Martin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heather M. Hines

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Georg Halder

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Durrell D. Kapan

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar

Furong Yuan

University of California

View shared research outputs
Top Co-Authors

Avatar

Laura Ferguson

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge