Robert E. Dale
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert E. Dale.
Biophysical Journal | 1979
Robert E. Dale; Josef Eisinger; W Blumberg
The measurement of the efficiency of Förster long-range resonance energy transfer between donor (D) and acceptor (A) luminophores attached to the same macromolecular substrate can be used to estimate the D-A separation, R. If the D and A transition dipoles sample all orientations with respect to the substrate (the isotropic condition) in a time short compared with the transfer time (the dynamic averaging condition), the average orientation factor less than K2 greater than is 2/3. If the isotropic condition is not satisfied but the dynamic averaging condition is, upper and lower bounds for less than K2 greater than, and thus R, may be obtained from observed D and A depolarizations, and these limits may be further narrowed if the transfer depolarization is also known. This paper offers experimental protocols for obtaining this reorientational information and presents contour plots of less than K2 greater than min and less than K2 greater than max as functions of generally observable depolarizations. This permits an uncertainty to be assigned to the determined value of R. The details of the D and A reoreintational process need not be known, but the orientational distributions are assumed to have at least approximate axial symmetry with respect to a stationary substrate. Average depolarization factors are derived for various orientational distribution functions that demonstrate the effects of various mechanisms for reorientation of the luminophores. It is shown that in general the static averaging regime does not lend itself to determinations of R.
Nature | 1999
John E. T. Corrie; Birgit Brandmeier; Roisean E. Ferguson; David R. Trentham; John Kendrick-Jones; Seth C. Hopkins; U. A. van der Heide; Yale E. Goldman; Cibele Sabido-David; Robert E. Dale; S. Criddle; Malcolm Irving
A new method is described for measuring motions of protein domains in their native environment on the physiological timescale. Pairs of cysteines are introduced into the domain at sites chosen from its static structure and are crosslinked by a bifunctional rhodamine. Domain orientation in a reconstituted macromolecular complex is determined by combining fluorescence polarization data from a small number of such labelled cysteine pairs. This approach bridges the gap between in vitro studies of protein structure and cellular studies of protein function and is used here to measure the tilt and twist of the myosin light-chain domain with respect to actin filaments in single muscle cells. The results reveal the structural basis for the lever-arm action of the light-chain domain of the myosin motor during force generation in muscle.
Journal of Molecular Biology | 2002
Seth C. Hopkins; Cibele Sabido-David; Uulke A. van der Heide; Roisean E. Ferguson; Birgit Brandmeier; Robert E. Dale; John Kendrick-Jones; John E. T. Corrie; David R. Trentham; Malcolm Irving; Yale E. Goldman
Structural changes in myosin power many types of cell motility including muscle contraction. Tilting of the myosin light chain domain (LCD) seems to be the final step in transducing the energy of ATP hydrolysis, amplifying small structural changes near the ATP binding site into nanometer-scale motions of the filaments. Here we used polarized fluorescence measurements from bifunctional rhodamine probes attached at known orientations in the LCD to describe the distribution of orientations of the LCD in active contraction and rigor. We applied rapid length steps to perturb the orientations of the population of myosin heads that are attached to actin, and thereby characterized the motions of these force-bearing myosin heads. During active contraction, this population is a small fraction of the total. When the filaments slide in the shortening direction in active contraction, the long axis of LCD tilts towards its nucleotide-free orientation with no significant twisting around this axis. In contrast, filament sliding in rigor produces coordinated tilting and twisting motions.
Journal of Biological Chemistry | 2012
James Hunt; Anthony H. Keeble; Robert E. Dale; Melissa K. Corbett; Rebecca L. Beavil; James A. Levitt; Marcus J. Swann; Klaus Suhling; Simon Ameer-Beg; Brian J. Sutton; Andrew J. Beavil
Background: Immunoglobulin E (IgE) antibodies play a role in allergic disease. Results: IgE has a bent conformation in solution that becomes more bent upon binding to the FcϵRI receptor but less bent upon binding the anti-IgE omalizumab. Conclusion: Conformational change is critical for FcϵRI-mediated IgE activity. Significance: The bent structure provides a molecular rationale for the susceptibility of IgE-FcϵRI complexes to allergenic stimulation. IgE binding to its high affinity receptor FcϵRI on mast cells and basophils is a key step in the mechanism of allergic disease and a target for therapeutic intervention. Early indications that IgE adopts a bent structure in solution have been confirmed by recent x-ray crystallographic studies of IgEFc, which further showed that the bend, contrary to expectation, is enhanced in the crystal structure of the complex with receptor. To investigate the structure of IgEFc and its conformational changes that accompany receptor binding in solution, we created a Förster resonance energy transfer (FRET) biosensor using biologically encoded fluorescent proteins fused to the N- and C-terminal IgEFc domains (Cϵ2 and Cϵ4, respectively) together with the theoretical basis for quantitating its behavior. This revealed not only that the IgEFc exists in a bent conformation in solution but also that the bend is indeed enhanced upon FcϵRI binding. No change in the degree of bending was seen upon binding to the B cell receptor for IgE, CD23 (FcϵRII), but in contrast, binding of the anti-IgE therapeutic antibody omalizumab decreases the extent of the bend, implying a conformational change that opposes FcϵRI engagement. HomoFRET measurements further revealed that the (Cϵ2)2 and (Cϵ4)2 domain pairs behave as rigid units flanking the conformational change in the Cϵ3 domains. Finally, modeling of the accessible conformations of the two Fab arms in FcϵRI-bound IgE revealed a mutual exclusion not seen in IgG and Fab orientations relative to the membrane that may predispose receptor-bound IgE to cross-linking by allergens.
Journal of the American Chemical Society | 2008
Alfonso De Simone; John E. T. Corrie; Robert E. Dale; Malcolm Irving; Franca Fraternali
Replica exchange molecular dynamics (REMD) calculations were used to determine the conformation and dynamics of bifunctional rhodamine probes attached to pairs of cysteines in three model systems: (a) a polyalanine helix, (b) the isolated C helix (residues 53-66) of troponin C, and (c) the C helix of the N-terminal region (residues 1-90) of troponin C (sNTnC). In each case, and for both diastereoisomers of each probe-protein complex, the hydrophobic face of the probe is close to the protein surface, and its carboxylate group is highly solvated. The visible-range fluorescence dipole of the probe is approximately parallel to the line joining the two cysteine residues, as assumed in previous in situ fluorescence polarization studies. The independent rotational motion of the probe with respect to the protein on the nanosecond time scale is highly restricted, in agreement with data from fluorescence polarization and NMR relaxation studies. The detailed interaction of the probe with the protein surface depends on steric factors, electrostatic and hydrophobic interactions, hydrogen bonds, and hydration effects. The interaction is markedly different between diastereoisomers, and multiple preferred conformations exist for a single diasteroisomer. These results show that the combination of the hydrophobic xanthylium moiety of bifunctional rhodamine with the carboxylate substitution in its pendant phenyl ring causes the probe to be immobilized on the protein surface, while the two-site cysteine attachment defines the orientation of its fluorescence dipole. These features allow the orientation of protein components to be accurately determined in situ by polarized fluorescence measurements from bifunctional rhodamine probes.
Biophysical Journal | 2002
Marcus G. Bell; Robert E. Dale; Uulke A. van der Heide; Yale E. Goldman
The method of polarized fluorescence depletion (PFD) has been applied to enhance the resolution of orientational distributions and dynamics obtained from fluorescence polarization (FP) experiments on ordered systems, particularly in muscle fibers. Previous FP data from single fluorescent probes were limited to the 2(nd)- and 4(th)-rank order parameters, and , of the probe angular distribution (beta) relative to the fiber axis and , a coefficient describing the extent of rapid probe motions. We applied intense 12-micros polarized photoselection pulses to transiently populate the triplet state of rhodamine probes and measured the polarization of the ground-state depletion using a weak interrogation beam. PFD provides dynamic information describing the extent of motions on the time scale between the fluorescence lifetime (e.g., 4 ns) and the duration of the photoselection pulse and it potentially supplies information about the probe angular distribution corresponding to order parameters above rank 4. Gizzard myosin regulatory light chain (RLC) was labeled with the 6-isomer of iodoacetamidotetramethylrhodamine and exchanged into rabbit psoas muscle fibers. In active contraction, dynamic motions of the RLC on the PFD time scale were intermediate between those observed in relaxation and rigor. The results indicate that previously observed disorder of the light chain region in contraction can be ascribed principally to dynamic motions on the microsecond time scale.
Journal of Chemical Physics | 2004
Jacek P. Szubiakowski; Robert E. Dale; Noël Boens; Marcel Ameloot
A deterministic identifiability analysis of the kinetic model for a reversible intermolecular two-state excited-state process with species-dependent rotational diffusion described by Brownian reorientation is presented. The cases of both spherically and cylindrically symmetric rotors, with no change in the principal axes of rotation on interconversion in the latter case, are specifically considered. The identifiability analysis is carried out in terms of compartmental modeling based on the S(t) identical with I( parallel)(t)+2I( perpendicular)(t) and D(t) identical with I( parallel)(t)-I( perpendicular)(t) functions, where I( parallel)(t) and I( perpendicular)(t) are the delta-response functions for fluorescence, polarized, respectively, parallel and perpendicular to the electric vector of linearly polarized excitation. It is shown that, from polarized time-resolved fluorescence data collected at two concentrations of coreactant and three appropriately chosen emission wavelengths, (a) a unique set of rate constants for the overall excited-state process is always obtained by making use of polarized measurements and (b) the rotational diffusion constants and geometrical factors associated with the different anisotropy decay components can be uniquely determined and assigned to each species. The geometrical factors are determined by the absorption and emission transitions in the two rotating species. For spherical rotors, these factors depend directly on the relative orientations of the transition moments, while for cylindrically symmetric rotors they depend on the orientations with respect to each other and to the symmetry axis.
Biophysical Journal | 1999
Robert E. Dale; Seth C. Hopkins; U.A. an der Heide; T. Marszałek; M. Irving; Yale E. Goldman
Biophysical Journal | 2004
Andrew S. Brack; Birgit Brandmeier; Roisean E. Ferguson; Susan Criddle; Robert E. Dale; Malcolm Irving
Biophysical Journal | 2003
Maria Acasandrei; Robert E. Dale; Martin vandeVen; P Steels; Marcel Ameloot