Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert E. Hollingsworth is active.

Publication


Featured researches published by Robert E. Hollingsworth.


World Journal of Stem Cells | 2015

Cancer stem cell plasticity and tumor hierarchy.

Marina C. Cabrera; Robert E. Hollingsworth; Elaine M. Hurt

The origins of the complex process of intratumoral heterogeneity have been highly debated and different cellular mechanisms have been hypothesized to account for the diversity within a tumor. The clonal evolution and cancer stem cell (CSC) models have been proposed as drivers of this heterogeneity. However, the concept of cancer stem cell plasticity and bidirectional conversion between stem and non-stem cells has added additional complexity to these highly studied paradigms and may help explain the tumor heterogeneity observed in solid tumors. The process of cancer stem cell plasticity in which cancer cells harbor the dynamic ability of shifting from a non-CSC state to a CSC state and vice versa may be modulated by specific microenvironmental signals and cellular interactions arising in the tumor niche. In addition to promoting CSC plasticity, these interactions may contribute to the cellular transformation of tumor cells and affect response to chemotherapeutic and radiation treatments by providing CSCs protection from these agents. Herein, we review the literature in support of this dynamic CSC state, discuss the effectors of plasticity, and examine their role in the development and treatment of cancer.


Cancer Research | 2015

Interleukin-6 stimulates defective angiogenesis

Ganga Gopinathan; Carla S. Milagre; Oliver M. T. Pearce; Louise E. Reynolds; Kairbaan Hodivala-Dilke; David A. Leinster; Haihong Zhong; Robert E. Hollingsworth; Richard G. Thompson; James R. Whiteford; Frances R. Balkwill

The cytokine IL6 has a number of tumor-promoting activities in human and experimental cancers, but its potential as an angiogenic agent has not been fully investigated. Here, we show that IL6 can directly induce vessel sprouting in the ex vivo aortic ring model, as well as endothelial cell proliferation and migration, with similar potency to VEGF. However, IL6-stimulated aortic ring vessel sprouts had defective pericyte coverage compared with VEGF-stimulated vessels. The mechanism of IL6 action on pericytes involved stimulation of the Notch ligand Jagged1 as well as angiopoietin2 (Ang2). When peritoneal xenografts of ovarian cancer were treated with an anti-IL6 antibody, pericyte coverage of vessels was restored. In addition, in human ovarian cancer biopsies, there was an association between levels of IL6 mRNA, Jagged1, and Ang2. Our findings have implications for the use of cancer therapies that target VEGF or IL6 and for understanding abnormal angiogenesis in cancers, chronic inflammatory disease, and stroke.


Stem Cells Translational Medicine | 2013

EZH2 Is Required for Breast and Pancreatic Cancer Stem Cell Maintenance and Can Be Used as a Functional Cancer Stem Cell Reporter

Lilian E. van Vlerken; Christine Kiefer; Chris Morehouse; Ying Li; Christopher Groves; Susan Wilson; Yihong Yao; Robert E. Hollingsworth; Elaine M. Hurt

Although cancer is largely seen as a disease stemming from genetic mutations, evidence has implicated epigenetic regulation of gene expression as a driving force for tumorigenesis. Epigenetic regulation by histone modification, specifically through polycomb group (PcG) proteins such as EZH2 and BMI‐1, is a major driver in stem cell biology and is found to be correlated with poor prognosis in many tumor types. This suggests a role for PcG proteins in cancer stem cells (CSCs). We hypothesized that epigenetic modification by EZH2, specifically, helps maintain the CSC phenotype and that in turn this epigenetic modifier can be used as a reporter for CSC activity in an in vitro high‐throughput screening assay. CSCs isolated from pancreatic and breast cancer lines had elevated EZH2 levels over non‐CSCs. Moreover, EZH2 knockdown by RNA interference significantly reduced the frequency of CSCs in all models tested, confirming the role of EZH2 in maintenance of the CSC population. Interestingly, genes affected by EZH2 loss, and therefore CSC loss, were inversely correlated with genes identified by CSC enrichment, further supporting the function of EZH2 CSC regulation. We translated these results into a novel assay whereby elevated EZH2 staining was used as a reporter for CSCs. Data confirmed that this assay could effectively measure changes, both inhibition and enrichment, in the CSC population, providing a novel approach to look at CSC activity. This assay provides a unique, rapid way to facilitate CSC screening across several tumor types to aid in further CSC‐related research.


Journal of Biomolecular Screening | 2014

A New Bliss Independence Model to Analyze Drug Combination Data

Wei Zhao; Kris Sachsenmeier; Lanju Zhang; Erin Sult; Robert E. Hollingsworth; Harry Yang

The Bliss independence model is widely used to analyze drug combination data when screening for candidate drug combinations. The method compares the observed combination response (YO) with the predicted combination response (YP), which was obtained based on the assumption that there is no effect from drug-drug interactions. Typically, the combination effect is declared synergistic if YO is greater than YP. However, this method lacks statistical rigor because it does not take into account the variability of the response measures and can frequently cause false-positive claims. In this article, we introduce a two-stage response surface model to describe the drug interaction across all dose combinations tested. This new method enables robust statistical testing for synergism at any dose combination, thus reducing the risk of false positives. The use of the method is illustrated through an application describing statistically significant “synergy regions” for candidate drug combinations targeting epidermal growth factor receptor and the insulin-like growth factor 1 receptor.


Molecular Cancer | 2013

Combining phenotypic and proteomic approaches to identify membrane targets in a ‘triple negative’ breast cancer cell type

Steven Rust; Sandrine Guillard; Kris Sachsenmeier; Carl Hay; Max Davidson; Anders Karlsson; Roger Karlsson; Erin Brand; David Lowne; John Elvin; Matt Flynn; Gene Kurosawa; Robert E. Hollingsworth; Lutz Jermutus; Ralph Minter

BackgroundThe continued discovery of therapeutic antibodies, which address unmet medical needs, requires the continued discovery of tractable antibody targets. Multiple protein-level target discovery approaches are available and these can be used in combination to extensively survey relevant cell membranomes. In this study, the MDA-MB-231 cell line was selected for membranome survey as it is a ‘triple negative’ breast cancer cell line, which represents a cancer subtype that is aggressive and has few treatment options.MethodsThe MDA-MB-231 breast carcinoma cell line was used to explore three membranome target discovery approaches, which were used in parallel to cross-validate the significance of identified antigens. A proteomic approach, which used membrane protein enrichment followed by protein identification by mass spectrometry, was used alongside two phenotypic antibody screening approaches. The first phenotypic screening approach was based on hybridoma technology and the second was based on phage display technology. Antibodies isolated by the phenotypic approaches were tested for cell specificity as well as internalisation and the targets identified were compared to each other as well as those identified by the proteomic approach. An anti-CD73 antibody derived from the phage display-based phenotypic approach was tested for binding to other ‘triple negative’ breast cancer cell lines and tested for tumour growth inhibitory activity in a MDA-MB-231 xenograft model.ResultsAll of the approaches identified multiple cell surface markers, including integrins, CD44, EGFR, CD71, galectin-3, CD73 and BCAM, some of which had been previously confirmed as being tractable to antibody therapy. In total, 40 cell surface markers were identified for further study. In addition to cell surface marker identification, the phenotypic antibody screening approaches provided reagent antibodies for target validation studies. This is illustrated using the anti-CD73 antibody, which bound other ‘triple negative’ breast cancer cell lines and produced significant tumour growth inhibitory activity in a MDA-MB-231 xenograft model.ConclusionsThis study has demonstrated that multiple methods are required to successfully analyse the membranome of a desired cell type. It has also successfully demonstrated that phenotypic antibody screening provides a mechanism for rapidly discovering and evaluating antibody tractable targets, which can significantly accelerate the therapeutic discovery process.


OncoImmunology | 2016

Targeting CD73 in the tumor microenvironment with MEDI9447

Carl Hay; Erin Sult; Qihui Huang; Kathy Mulgrew; Stacy Fuhrmann; Kelly McGlinchey; Scott A. Hammond; Raymond Rothstein; Jonathan Rios-Doria; Edmund Poon; Nick Holoweckyj; Nicholas M. Durham; Ching Ching Leow; Gundo Diedrich; Melissa Damschroder; Ronald Herbst; Robert E. Hollingsworth; Kris Sachsenmeier

ABSTRACT MEDI9447 is a human monoclonal antibody that is specific for the ectoenzyme CD73 and currently undergoing Phase I clinical trials. Here we show that MEDI9447 is a potent inhibitor of CD73 ectonucleotidase activity, with wide ranging immune regulatory consequences. MEDI9447 results in relief from adenosine monophosphate (AMP)-mediated lymphocyte suppression in vitro and inhibition of mouse syngeneic tumor growth in vivo. In contrast with other cancer immunotherapy agents such as checkpoint inhibitors or T-cell agonists, MEDI9447 drives changes in both myeloid and lymphoid infiltrating leukocyte populations within the tumor microenvironment of mouse models. Changes include significant alterations in a number of tumor micro-environmental subpopulations including increases in CD8+ effector cells and activated macrophages. Furthermore, these changes correlate directly with responder and non-responder subpopulations within animal studies using syngeneic tumors. Combination data showing additive activity between MEDI9447 and anti-PD-1 antibodies using human cells in vitro and mouse tumor models further demonstrate the potential value of relieving adenosine-mediated immunosuppression. Based on these data, a Phase I study to test the safety, tolerability, and clinical activity of MEDI9447 in cancer patients was initiated (NCT02503774).


The FASEB Journal | 2012

Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment

Valérie Laurent-Matha; Pitter F. Huesgen; Olivier Masson; Danielle Derocq; Christine Prébois; Magali Gary-Bobo; Fabien Lecaille; Bertrand Rebière; Guillaume Meurice; Cedric Orear; Robert E. Hollingsworth; Magnus Abrahamson; Gilles Lalmanach; Christopher M. Overall; Emmanuelle Liaudet-Coopman

The aspartic protease cathepsin D, a poor prognostic indicator of breast cancer, is abundantly secreted as procathepsin D by human breast cancer cells and self‐activates at low pH in vitro, giving rise to catalytically active cathepsin D. Due to a lower extracellular pH in tumor microenvironments compared to normal tissues, cathepsin D may cleave pathophysiological substrates contributing to cancer progression. Here, we show by yeast 2‐hybrid and degradomics analyses that cystatin C, the most potent natural secreted inhibitor of cysteine cathepsins, both binds to and is a substrate of extracellular procathepsin D. The amount of cystatin C in the extracellular environment is reduced in the secretome of mouse embryonic fibroblasts stably transfected with human cathepsin D. Cathepsin D extensively cleaved cystatin C in vitro at low pH. Cathepsin D secreted by breast cancer cells also processed cystatin C at the pericellular pH of tumors and so enhancing extracellular proteolytic activity of cysteine cathepsins. Thus, tumor derived cathepsin D assists breast cancer progression by reducing cystatin C activity, which, in turn, enhances cysteine cathepsin proteolytic activity, revealing a new link between protease classes in the protease web.—Laurent‐Matha, V., Huesgen, P. F., Masson, O., Derocq, D., Prébois, C., Gary‐Bobo, M., Lecaille, F., Rebière, B., Meurice, G., Oréar, C., Hollingsworth, R. E., Abrahamson, M., Lalmanach, G., Overall, C. M., Liaudet‐Coopman, E. Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. FASEB J. 26, 5172–5181 (2012). www.fasebj.org


Molecular Cancer | 2015

Identification of anti-tumour biologics using primary tumour models, 3-D phenotypic screening and image-based multi-parametric profiling.

Alan Sandercock; Steven Rust; Sandrine Guillard; Kris Sachsenmeier; Nick Holoweckyj; Carl Hay; Matt Flynn; Qihui Huang; Kuan Yan; Bram Herpers; Leo Price; Jo Soden; Jim Freeth; Lutz Jermutus; Robert E. Hollingsworth; Ralph Minter

BackgroundMonolayer cultures of immortalised cell lines are a popular screening tool for novel anti-cancer therapeutics, but these methods can be a poor surrogate for disease states, and there is a need for drug screening platforms which are more predictive of clinical outcome. In this study, we describe a phenotypic antibody screen using three-dimensional cultures of primary cells, and image-based multi-parametric profiling in PC-3 cells, to identify anti-cancer biologics against new therapeutic targets.MethodsScFv Antibodies and designed ankyrin repeat proteins (DARPins) were isolated using phage display selections against primary non-small cell lung carcinoma cells. The selected molecules were screened for anti-proliferative and pro-apoptotic activity against primary cells grown in three-dimensional culture, and in an ultra-high content screen on a 3-D cultured cell line using multi-parametric profiling to detect treatment-induced phenotypic changes. The targets of molecules of interest were identified using a cell-surface membrane protein array. An anti-CUB domain containing protein 1 (CDCP1) antibody was tested for tumour growth inhibition in a patient-derived xenograft model, generated from a stage-IV non-small cell lung carcinoma, with and without cisplatin.ResultsTwo primary non-small cell lung carcinoma cell models were established for antibody isolation and primary screening in anti-proliferative and apoptosis assays. These assays identified multiple antibodies demonstrating activity in specific culture formats. A subset of the DARPins was profiled in an ultra-high content multi-parametric screen, where 300 morphological features were measured per sample. Machine learning was used to select features to classify treatment responses, then antibodies were characterised based on the phenotypes that they induced. This method co-classified several DARPins that targeted CDCP1 into two sets with different phenotypes. Finally, an anti-CDCP1 antibody significantly enhanced the efficacy of cisplatin in a patient-derived NSCLC xenograft model.ConclusionsPhenotypic profiling using complex 3-D cell cultures steers hit selection towards more relevant in vivo phenotypes, and may shed light on subtle mechanistic variations in drug candidates, enabling data-driven decisions for oncology target validation. CDCP1 was identified as a potential target for cisplatin combination therapy.


Neoplasia | 2015

Doxil Synergizes with Cancer Immunotherapies to Enhance Antitumor Responses in Syngeneic Mouse Models

Jonathan Rios-Doria; Nicholas M. Durham; Leslie Wetzel; Raymond Rothstein; Jon Chesebrough; Nicholas Holoweckyj; Wei Zhao; Ching Ching Leow; Robert E. Hollingsworth

Based on the previously described roles of doxorubicin in immunogenic cell death, both doxorubicin and liposomal doxorubicin (Doxil) were evaluated for their ability to boost the antitumor response of different cancer immunotherapies including checkpoint blockers (anti–PD-L1, PD-1, and CTLA-4 mAbs) and TNF receptor agonists (OX40 and GITR ligand fusion proteins) in syngeneic mouse models. In a preventative CT26 mouse tumor model, both doxorubicin and Doxil synergized with anti–PD-1 and CTLA-4 mAbs. Doxil was active when CT26 tumors were grown in immunocompetent mice but not immunocompromised mice, demonstrating that Doxil activity is increased in the presence of a functional immune system. Using established tumors and maximally efficacious doses of Doxil and cancer immunotherapies in either CT26 or MCA205 tumor models, combination groups produced strong synergistic antitumor effects, a larger percentage of complete responders, and increased survival. In vivo pharmacodynamic studies showed that Doxil treatment decreased the percentage of tumor-infiltrating regulatory T cells and, in combination with anti–PD-L1, increased the percentage of tumor-infiltrating CD8+ T cells. In the tumor, Doxil administration increased CD80 expression on mature dendritic cells. CD80 expression was also increased on both monocytic and granulocytic myeloid cells, suggesting that Doxil may induce these tumor-infiltrating cells to elicit a costimulatory phenotype capable of activating an antitumor T-cell response. These results uncover a novel role for Doxil in immunomodulation and support the use of Doxil in combination with checkpoint blockade or TNFR agonists to increase response rates and antitumor activity.


Journal of Controlled Release | 2016

Rational design, biophysical and biological characterization of site-specific antibody-tubulysin conjugates with improved stability, efficacy and pharmacokinetics

Pamela Thompson; Ryan Fleming; Binyam Bezabeh; Fengying Huang; Shenlan Mao; Cui Chen; Jay Harper; Haihong Zhong; Xizhe Gao; Xiang-Qing Yu; Mary Jane Hinrichs; Molly Reed; Adeela Kamal; Patrick Strout; Song Cho; Rob Woods; Robert E. Hollingsworth; Rakesh Dixit; Herren Wu; Changshou Gao; Nazzareno Dimasi

Antibody-drug conjugates (ADCs) are among the most promising empowered biologics for cancer treatment. ADCs are commonly prepared by chemical conjugation of small molecule cytotoxic anti-cancer drugs to antibodies through either lysine side chains or cysteine thiols generated by the reduction of interchain disulfide bonds. Both methods yield heterogeneous conjugates with complex biophysical properties and suboptimal serum stability, efficacy, and pharmacokinetics. To limit the complexity of cysteine-based ADCs, we have engineered and characterized in vitro and in vivo antibody cysteine variants that allow precise control of both site of conjugation and drug load per antibody molecule. We demonstrate that the chemically-defined cysteine-engineered antibody-tubulysin conjugates have improved ex vivo and in vivo stability, efficacy, and pharmacokinetics when compared to conventional cysteine-based ADCs with similar drug-to-antibody ratios. In addition, to limit the non-target FcγRs mediated uptake of the ADCs by cells of the innate immune system, which may result in off-target toxicities, the ADCs have been engineered to lack Fc-receptor binding. The strategies described herein are broadly applicable to any full-length IgG or Fc-based ADC and have been incorporated into an ADC that is in phase I clinical development.

Collaboration


Dive into the Robert E. Hollingsworth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge