Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert E. MacLaren is active.

Publication


Featured researches published by Robert E. MacLaren.


Nature | 2006

Retinal repair by transplantation of photoreceptor precursors.

Robert E. MacLaren; Rachael A. Pearson; Angus MacNeil; R. H. Douglas; T.E. Salt; M Akimoto; Anand Swaroop; Jane C. Sowden; Robin R. Ali

Photoreceptor loss causes irreversible blindness in many retinal diseases. Repair of such damage by cell transplantation is one of the most feasible types of central nervous system repair; photoreceptor degeneration initially leaves the inner retinal circuitry intact and new photoreceptors need only make single, short synaptic connections to contribute to the retinotopic map. So far, brain- and retina-derived stem cells transplanted into adult retina have shown little evidence of being able to integrate into the outer nuclear layer and differentiate into new photoreceptors. Furthermore, there has been no demonstration that transplanted cells form functional synaptic connections with other neurons in the recipient retina or restore visual function. This might be because the mature mammalian retina lacks the ability to accept and incorporate stem cells or to promote photoreceptor differentiation. We hypothesized that committed progenitor or precursor cells at later ontogenetic stages might have a higher probability of success upon transplantation. Here we show that donor cells can integrate into the adult or degenerating retina if they are taken from the developing retina at a time coincident with the peak of rod genesis. These transplanted cells integrate, differentiate into rod photoreceptors, form synaptic connections and improve visual function. Furthermore, we use genetically tagged post-mitotic rod precursors expressing the transcription factor Nrl (ref. 6) (neural retina leucine zipper) to show that successfully integrated rod photoreceptors are derived only from immature post-mitotic rod precursors and not from proliferating progenitor or stem cells. These findings define the ontogenetic stage of donor cells for successful rod photoreceptor transplantation.


Nature Medicine | 2006

Effective gene therapy with nonintegrating lentiviral vectors

Rafael J. Yáñez-Muñoz; Kamaljit S. Balaggan; Angus MacNeil; Steven J. Howe; Manfred Schmidt; Alexander J. Smith; Prateek K. Buch; Robert E. MacLaren; Patrick N. Anderson; Susie E. Barker; Yanai Duran; Cynthia C. Bartholomae; Christof von Kalle; John R. Heckenlively; Christine Kinnon; Robin R. Ali; Adrian J. Thrasher

Retroviral and lentiviral vector integration into host-cell chromosomes carries with it a finite chance of causing insertional mutagenesis. This risk has been highlighted by the induction of malignancy in mouse models, and development of lymphoproliferative disease in three individuals with severe combined immunodeficiency–X1 (refs. 2,3). Therefore, a key challenge for clinical therapies based on retroviral vectors is to achieve stable transgene expression while minimizing insertional mutagenesis. Recent in vitro studies have shown that integration-deficient lentiviral vectors can mediate stable transduction. With similar vectors, we now show efficient and sustained transgene expression in vivo in rodent ocular and brain tissues. We also show substantial rescue of clinically relevant rodent models of retinal degeneration. Therefore, the high efficiency of gene transfer and expression mediated by lentiviruses can be harnessed in vivo without a requirement for vector integration. For therapeutic application to postmitotic tissues, this system substantially reduces the risk of insertional mutagenesis.


The Lancet | 2014

Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial

Robert E. MacLaren; Markus Groppe; Alun R. Barnard; Charles L. Cottriall; Tanya Tolmachova; Len Seymour; K. Reed Clark; Matthew J. During; Frans P.M. Cremers; Graeme C.M. Black; Andrew J. Lotery; Susan M. Downes; Andrew R. Webster; Miguel C. Seabra

Summary Background Choroideremia is an X-linked recessive disease that leads to blindness due to mutations in the CHM gene, which encodes the Rab escort protein 1 (REP1). We assessed the effects of retinal gene therapy with an adeno-associated viral (AAV) vector encoding REP1 (AAV.REP1) in patients with this disease. Methods In a multicentre clinical trial, six male patients (aged 35–63 years) with choroideremia were administered AAV.REP1 (0·6–1·0×1010 genome particles, subfoveal injection). Visual function tests included best corrected visual acuity, microperimetry, and retinal sensitivity tests for comparison of baseline values with 6 months after surgery. This study is registered with ClinicalTrials.gov, number NCT01461213. Findings Despite undergoing retinal detachment, which normally reduces vision, two patients with advanced choroideremia who had low baseline best corrected visual acuity gained 21 letters and 11 letters (more than two and four lines of vision). Four other patients with near normal best corrected visual acuity at baseline recovered to within one to three letters. Mean gain in visual acuity overall was 3·8 letters (SE 4·1). Maximal sensitivity measured with dark-adapted microperimetry increased in the treated eyes from 23·0 dB (SE 1·1) at baseline to 25·3 dB (1·3) after treatment (increase 2·3 dB [95% CI 0·8–3·8]). In all patients, over the 6 months, the increase in retinal sensitivity in the treated eyes (mean 1·7 [SE 1·0]) was correlated with the vector dose administered per mm2 of surviving retina (r=0·82, p=0·04). By contrast, small non-significant reductions (p>0·05) were noted in the control eyes in both maximal sensitivity (–0·8 dB [1·5]) and mean sensitivity (–1·6 dB [0·9]). One patient in whom the vector was not administered to the fovea re-established variable eccentric fixation that included the ectopic island of surviving retinal pigment epithelium that had been exposed to vector. Interpretation The initial results of this retinal gene therapy trial are consistent with improved rod and cone function that overcome any negative effects of retinal detachment. These findings lend support to further assessment of gene therapy in the treatment of choroideremia and other diseases, such as age-related macular degeneration, for which intervention should ideally be applied before the onset of retinal thinning. Funding UK Department of Health and Wellcome Trust.


Investigative Ophthalmology & Visual Science | 2009

The Drusenlike Phenotype in Aging Ccl2-Knockout Mice Is Caused by an Accelerated Accumulation of Swollen Autofluorescent Subretinal Macrophages

Ulrich F.O. Luhmann; Scott J. Robbie; Peter M.G. Munro; Susie E. Barker; Yanai Duran; Vy Luong; Frederick W. Fitzke; James W. Bainbridge; Robin R. Ali; Robert E. MacLaren

PURPOSE Drusen, which are defined clinically as yellowish white spots in the outer retina, are cardinal features of age-related macular degeneration (AMD). Ccl2-knockout (Ccl2(-/-)) mice have been reported to develop drusen and phenotypic features similar to AMD, including an increased susceptibility to choroidal neovascularization (CNV). This study was conducted to investigate the nature of the drusenlike lesions in vivo and further evaluate the Ccl2(-/-) mouse as a model of AMD. METHODS The eyes of 2- to 25-month-old Ccl2(-/-) and C57Bl/6 mice were examined in vivo by autofluorescence scanning laser ophthalmoscopy (AF-SLO) and electroretinography, and the extent of laser-induced CNV was measured by fluorescein fundus angiography. The retinal morphology was also assessed by immunohistochemistry and quantitative histologic and ultrastructural morphometry. RESULTS The drusenlike lesions of Ccl2(-/-) mice comprised accelerated accumulation of swollen CD68(+), F4/80(+) macrophages in the subretinal space that were apparent as autofluorescent foci on AF-SLO. These macrophages contained pigment granules and phagosomes with outer segment and lipofuscin inclusions that may account for their autofluorescence. Only age-related retinal pigment epithelium (RPE) damage, photoreceptor loss, and sub-RPE deposits were observed but, despite the accelerated accumulation of macrophages, we identified no spontaneous development of CNV in the senescent mice and found a reduced susceptibility to laser-induced CNV in the Ccl2(-/-) mice. CONCLUSIONS These findings suggest that the lack of Ccl2 leads to a monocyte/macrophage-trafficking defect during aging and to an impaired recruitment of these cells to sites of laser injury. Other, previously described features of Ccl2(-/-) mice that are similar to AMD may be the result of aging alone.


Experimental Eye Research | 2008

Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors

Emma L. West; Rachael A. Pearson; M. Tschernutter; Jane C. Sowden; Robert E. MacLaren; Robin R. Ali

Retinal degeneration is the leading cause of untreatable blindness in the developed world. Cell transplantation strategies provide a novel therapeutic approach to repair the retina and restore sight. Previously, we have shown that photoreceptor precursor cells can integrate and form functional photoreceptors after transplantation into the subretinal space of the adult mouse. In a clinical setting, however, it is likely that far greater numbers of integrated photoreceptors would be required to restore visual function. We therefore sought to assess whether the outer limiting membrane (OLM), a natural barrier between the subretinal space and the outer nuclear layer (ONL), could be reversibly disrupted and if disruption of this barrier could lead to enhanced numbers of transplanted photoreceptors integrating into the ONL. Transient chemical disruption of the OLM was induced in adult mice using the glial toxin, dl-alpha-aminoadipic acid (AAA). Dissociated early post-natal neural retinal cells were transplanted via subretinal injection at various time-points after AAA administration. At 3 weeks post-injection, the number of integrated, differentiated photoreceptor cells was assessed and compared with those found in the PBS-treated contralateral eye. We demonstrate for the first time that the OLM can be reversibly disrupted in adult mice, using a specific dose of AAA administered by intravitreal injection. In this model, OLM disruption is maximal at 72 h, and recovers by 2 weeks. When combined with cell transplantation, disruption of the OLM leads to a significant increase in the number of photoreceptors integrated within the ONL compared with PBS-treated controls. This effect was only seen in animals in which AAA had been administered 72 h prior to transplantation, i.e. when precursor cells were delivered into the subretinal space at a time coincident with maximal OLM disruption. These findings suggest that the OLM presents a physical barrier to photoreceptor integration following transplantation into the subretinal space in the adult mouse. Reversible disruption of the OLM may provide a strategy for increasing cell integration in future therapeutic applications.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation

Mandeep Singh; Peter Charbel Issa; Rachel Butler; Chris Martin; Daniel M. Lipinski; Sumathi Sekaran; Alun R. Barnard; Robert E. MacLaren

One strategy to restore vision in retinitis pigmentosa and age-related macular degeneration is cell replacement. Typically, patients lose vision when the outer retinal photoreceptor layer is lost, and so the therapeutic goal would be to restore vision at this stage of disease. It is not currently known if a degenerate retina lacking the outer nuclear layer of photoreceptor cells would allow the survival, maturation, and reconnection of replacement photoreceptors, as prior studies used hosts with a preexisting outer nuclear layer at the time of treatment. Here, using a murine model of severe human retinitis pigmentosa at a stage when no host rod cells remain, we show that transplanted rod precursors can reform an anatomically distinct and appropriately polarized outer nuclear layer. A trilaminar organization was returned to rd1 hosts that had only two retinal layers before treatment. The newly introduced precursors were able to resume their developmental program in the degenerate host niche to become mature rods with light-sensitive outer segments, reconnecting with host neurons downstream. Visual function, assayed in the same animals before and after transplantation, was restored in animals with zero rod function at baseline. These observations suggest that a cell therapy approach may reconstitute a light-sensitive cell layer de novo and hence repair a structurally damaged visual circuit. Rather than placing discrete photoreceptors among preexisting host outer retinal cells, total photoreceptor layer reconstruction may provide a clinically relevant model to investigate cell-based strategies for retinal repair.


Vision Research | 2015

Subretinal Visual Implant Alpha IMS – Clinical trial interim report

Katarina Stingl; Karl Ulrich Bartz-Schmidt; Dorothea Besch; Caroline Chee; Charles L. Cottriall; Florian Gekeler; Markus Groppe; Timothy L. Jackson; Robert E. MacLaren; Assen Koitschev; Akos Kusnyerik; James E. Neffendorf; János Németh; Mohamed Adheem Naser Naeem; Tobias Peters; James D. Ramsden; Helmut G. Sachs; Andrew Simpson; Mandeep Singh; Barbara Wilhelm; David Wong; Eberhart Zrenner

A subretinal visual implant (Alpha IMS, Retina Implant AG, Reutlingen, Germany) was implanted in 29 blind participants with outer retinal degeneration in an international multicenter clinical trial. Primary efficacy endpoints of the study protocol were a significant improvement of activities of daily living and mobility to be assessed by activities of daily living tasks, recognition tasks, mobility, or a combination thereof. Secondary efficacy endpoints were a significant improvement of visual acuity/light perception and/or object recognition (clinicaltrials.gov, NCT01024803). During up to 12 months observation time twenty-one participants (72%) reached the primary endpoints, of which thirteen participants (45%) reported restoration of visual function which they use in daily life. Additionally, detection, localization, and identification of objects were significantly better with the implant power switched on in the first 3 months. Twenty-five participants (86%) reached the secondary endpoints. Measurable grating acuity was up to 3.3 cycles per degree, visual acuities using standardized Landolt C-rings were 20/2000, 20/2000, 20/606 and 20/546. Maximal correct motion perception ranged from 3 to 35 degrees per second. These results show that subretinal implants can restore very-low-vision or low vision in blind (light perception or less) patients with end-stage hereditary retinal degenerations.


Cell Transplantation | 2010

Targeted disruption of outer limiting membrane junctional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina.

Rachael A. Pearson; Amanda C. Barber; Emma L. West; Robert E. MacLaren; Yanai Duran; James W. Bainbridge; Jane C. Sowden; Robin R. Ali

Diseases culminating in photoreceptor loss are a major cause of untreatable blindness. Transplantation of rod photoreceptors is feasible, provided donor cells are at an appropriate stage of development when transplanted. Nevertheless, the proportion of cells that integrate into the recipient outer nuclear layer (ONL) is low. The outer limiting membrane (OLM), formed by adherens junctions between Müller glia and photoreceptors, may impede transplanted cells from migrating into the recipient ONL. Adaptor proteins such as Crumbs homologue 1 (Crb1) and zona occludins (ZO-1) are essential for localization of the OLM adherens junctions. We investigated whether targeted disruption of these proteins enhances donor cell integration. Transplantation of rod precursors in wild-type mice achieved 949 ± 141 integrated cells. By contrast, integration is significantly higher when rod precursors are transplanted into Crb1rd8/rd8 mice, a model of retinitis pigmentosa and Lebers congenital amaurosis that lacks functional CRB1 protein and displays disruption of the OLM (7,819 ± 1,297; maximum 15,721 cells). We next used small interfering (si)RNA to transiently reduce the expression of ZO-1 and generate a reversible disruption of the OLM. ZO-1 knockdown resulted in similar, significantly improved, integration of transplanted cells in wild-type mice (7,037 ± 1,293; maximum 11,965 cells). Finally, as the OLM remains largely intact in many retinal disorders, we tested whether transient ZO-1 knockdown increased integration in a model of retinitis pigmentosa, the rho-/- mouse; donor cell integration was significantly increased from 313 ± 58 cells without treatment to 919 ± 198 cells after ZO-1 knockdown. This study shows that targeted disruption of OLM junctional proteins enhances integration in the wild-type and degenerating retina and may be a useful approach for developing photoreceptor transplantation strategies.


Stem Cells | 2010

Long-term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation.

Emma L. West; Rachael A. Pearson; Susie E. Barker; Ulrich F.O. Luhmann; Robert E. MacLaren; Amanda C. Barber; Yanai Duran; Alexander J. Smith; Jane C. Sowden; Robin R. Ali

Stem cell therapy presents an opportunity to replace photoreceptors that are lost as a result of inherited and age‐related degenerative disease. We have previously shown that murine postmitotic rod photoreceptor precursor cells, identified by expression of the rod‐specific transcription factor Nrl, are able to migrate into and integrate within the adult murine neural retina. However, their long‐term survival has yet to be determined. Here, we found that integrated Nrl.gfp+ve photoreceptors were present up to 12 months post‐transplantation, albeit in significantly reduced numbers. Surviving cells had rod‐like morphology, including inner/outer segments and spherule synapses. In a minority of eyes, we observed an early, marked reduction in integrated photoreceptors within 1 month post‐transplantation, which correlated with increased numbers of amoeboid macrophages, indicating acute loss of transplanted cells due to an inflammatory response. In the majority of transplants, similar numbers of integrated cells were observed between 1 and 2 months post‐transplantation. By 4 months, however, we observed a significant decrease in integrated cell survival. Macrophages and T cells were present around the transplantation site, indicating a chronic immune response. Immune suppression of recipients significantly increased transplanted photoreceptor survival, indicating that the loss observed in unsuppressed recipients resulted from T cell‐mediated host immune responses. Thus, if immune responses are modulated, correctly integrated transplanted photoreceptors can survive for extended periods of time in hosts with partially mismatched H‐2 haplotypes. These findings suggest that autologous donor cells are optimal for therapeutic approaches to repair the neural retina, though with immune suppression nonautologous donors may be effective. STEM CELLS 2010;28:1997–2007


Progress in Brain Research | 2009

Cell transplantation strategies for retinal repair

Emma L. West; Rachael A. Pearson; Robert E. MacLaren; Jane C. Sowden; Robin R. Ali

Cell transplantation is a novel therapeutic strategy to restore visual responses to the degenerate adult neural retina and represents an exciting area of regenerative neurotherapy. So far, it has been shown that transplanted postmitotic photoreceptor precursors are able to functionally integrate into the adult mouse neural retina. In this review, we discuss the differentiation of photoreceptor cells from both adult and embryonic-derived stem cells and their potential for retinal cell transplantation. We also discuss the strategies used to overcome barriers present in the degenerate neural retina and improve retinal cell integration. Finally, we consider the future translation of retinal cell therapy as a therapeutic strategy to treat retinal degeneration.

Collaboration


Dive into the Robert E. MacLaren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin R. Ali

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge