Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert E. Mandrell is active.

Publication


Featured researches published by Robert E. Mandrell.


Applied and Environmental Microbiology | 2011

Prevalence, distribution, and diversity of Salmonella enterica in a major produce region of California.

Lisa Gorski; Craig T. Parker; Anita Liang; Michael B. Cooley; Michele T. Jay-Russell; Andrew G. Gordus; E. Robert Atwill; Robert E. Mandrell

ABSTRACT A survey was initiated to determine the prevalence of Salmonella enterica in the environment in and around Monterey County, CA, a major agriculture region of the United States. Trypticase soy broth enrichment cultures of samples of soil/sediment (n = 617), water (n = 252), wildlife (n = 476), cattle feces (n = 795), and preharvest lettuce and spinach (n = 261) tested originally for the presence of pathogenic Escherichia coli were kept in frozen storage and later used to test for the presence of S. enterica. A multipathogen oligonucleotide microarray was employed to identify a subset of samples that might contain Salmonella in order to test various culture methods to survey a larger number of samples. Fifty-five of 2,401 (2.3%) samples yielded Salmonella, representing samples obtained from 20 different locations in Monterey and San Benito Counties. Water had the highest percentage of positives (7.1%) among sample types. Wildlife yielded 20 positive samples, the highest number among sample types, with positive samples from birds (n = 105), coyotes (n = 40), deer (n = 104), elk (n = 39), wild pig (n = 41), and skunk (n = 13). Only 16 (2.6%) of the soil/sediment samples tested positive, and none of the produce samples had detectable Salmonella. Sixteen different serotypes were identified among the isolates, including S. enterica serotypes Give, Typhimurium, Montevideo, and Infantis. Fifty-four strains were sensitive to 12 tested antibiotics; one S. Montevideo strain was resistant to streptomycin and gentamicin. Pulsed-field gel electrophoresis (PFGE) analysis of the isolates revealed over 40 different pulsotypes. Several strains were isolated from water, wildlife, or soil over a period of several months, suggesting that they were persistent in this environment.


Advances in Agronomy | 2011

Irrigation Waters as a Source of Pathogenic Microorganisms in Produce. A Review

Yakov A. Pachepsky; Daniel R. Shelton; Jean E. McLain; Jitendra Patel; Robert E. Mandrell

There is increasing evidence that consumption of raw fresh produce is a major factor contributing to human gastrointestinal illness. A wide variety of pathogens contribute to food-borne illnesses, including bacteria (e.g., Salmonella, pathogenic Escherichia coli), protozoa (e.g., Cryptosporidium, Giardia), and viruses (e.g., noroviruses). Large-scale production of produce typically requires some form of irrigation during the growing season. There is a rapidly growing body of research documenting and elucidating the pathways of produce contamination by water-borne pathogens. However, many gaps still exist in our knowledge and understanding. The purpose of this review is to provide a comprehensive approach to the issue, including the most recent research. Topics covered include: temporal and spatial variability, and regional differences, in pathogen and indicator organism concentrations in water; direct and circumstantial evidence for contaminated water as a source of food-borne pathogens; fate and transport of pathogens and indicator organisms in irrigation systems, and the role of environmental microbial reservoirs; and current standards for irrigation water quality, and risk assessment. A concerted effort by researchers and practitioners is needed to maintain food safety of fresh produce in an increasingly intensive food production system and limited and declining irrigation water resources.


Applied and Environmental Microbiology | 2005

Speciation of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis by matrix-assisted laser desorption ionization-time of flight mass spectrometry.

Robert E. Mandrell; Leslie A. Harden; Anna H. Bates; William G. Miller; William F. Haddon; Clifton K. Fagerquist

ABSTRACT Multiple strains of Campylobacter coli, C. jejuni, C. helveticus, C. lari, C. sputorum, and C. upsaliensis isolated from animal, clinical, or food samples have been analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Whole bacterial cells were harvested from colonies or confluent growth on agar and transferred directly into solvent and then to a spot of dried 3-methoxy-4-hydroxycinnamic acid (matrix). Multiple ions in the 5,000- to 15,000-Da mass range were evident in spectra for each strain; one or two ions in the 9,500- to 11,000-Da range were consistently high intensity. “Species-identifying” biomarker ions (SIBIs) were evident from analyses of multiple reference strains for each of the six species, including the genome strains C. jejuni NCTC 11168 and C. jejuni RM1221. Strains grown on nine different combinations of media and atmospheres yielded SIBI masses within ±5 Da with external instrument calibration. The highest-intensity C. jejuni SIBIs were cytosolic proteins, including GroES, HU/HCj, and RplL. Multiple intraspecies SIBIs, corresponding probably to nonsynonymous nucleotide polymorphisms, also provided some intraspecies strain differentiation. MALDI-TOF MS analysis of 75 additional Campylobacter strains isolated from humans, poultry, swine, dogs, and cats revealed (i) associations of SIBI type with source, (ii) strains previously speciated incorrectly, and (iii) “strains” composed of more than one species. MALDI-TOF MS provides an accurate, sensitive, and rapid method for identification of multiple Campylobacter species relevant to public health and food safety.


Applied and Environmental Microbiology | 2005

Production of Autoinducer 2 in Salmonella enterica Serovar Thompson Contributes to Its Fitness in Chickens but Not on Cilantro Leaf Surfaces

Maria T. Brandl; William G. Miller; Anne H. Bates; Robert E. Mandrell

ABSTRACT Food-borne illness caused by Salmonella enterica has been linked traditionally to poultry products but is associated increasingly with fresh fruits and vegetables. We have investigated the role of the production of autoinducer 2 (AI-2) in the ability of S. enterica serovar Thompson to colonize the chicken intestine and the cilantro phyllosphere. A mutant of S. enterica serovar Thompson that is defective in AI-2 production was constructed by insertional mutagenesis of luxS. The population size of the S. enterica serovar Thompson parental strain was significantly higher than that of its LuxS− mutant in the intestine, spleen, and droppings of chicks 12 days after their oral inoculation with the strains in a ratio of 1:1. In contrast, no significant difference in the population dynamics of the parental and LuxS− strain was observed after their inoculation singly or in mixtures onto cilantro plants. Digital image analysis revealed that 54% of S. enterica serovar Thompson cells were present in large aggregates on cilantro leaves but that the frequency distributions of the size of aggregates formed by the parental strain and the LuxS− mutant were not significantly different. Carbon utilization profiles indicated that the AI-2-producing strain utilized a variety of amino and organic acids more efficiently than its LuxS− mutant but that most sugars were utilized similarly in both strains. Thus, inherent differences in the nutrients available to S. enterica in the phyllosphere and in the chicken intestine may underlie the differential contribution of AI-2 synthesis to the fitness of S. enterica in these environments.


Applied and Environmental Microbiology | 2011

Distinct acid resistance and survival fitness displayed by Curli variants of enterohemorrhagic Escherichia coli O157:H7.

Michelle Qiu Carter; Maria T. Brandl; Jacqueline W. Louie; Jennifer L. Kyle; Diana K. Carychao; Michael B. Cooley; Craig T. Parker; Anne H. Bates; Robert E. Mandrell

ABSTRACT Curli are adhesive fimbriae of Enterobacteriaceae and are involved in surface attachment, cell aggregation, and biofilm formation. Here, we report that both inter- and intrastrain variations in curli production are widespread in enterohemorrhagic Escherichia coli O157:H7. The relative proportions of curli-producing variants (C+) and curli-deficient variants (C−) in an E. coli O157:H7 cell population varied depending on the growth conditions. In variants derived from the 2006 U.S. spinach outbreak strains, the shift between the C+ and C− subpopulations occurred mostly in response to starvation and was unidirectional from C− to C+; in variants derived from the 1993 hamburger outbreak strains, the shift occurred primarily in response to oxygen depletion and was bidirectional. Furthermore, curli variants derived from the same strain displayed marked differences in survival fitness: C+ variants grew to higher concentrations in nutrient-limited conditions than C− variants, whereas C− variants were significantly more acid resistant than C+ variants. This difference in acid resistance does not appear to be linked to the curli fimbriae per se, since a csgA deletion mutant in either a C+ or a C− variant exhibited an acid resistance similar to that of its parental strain. Our data suggest that natural curli variants of E. coli O157:H7 carry several distinct physiological properties that are important for their environmental survival. Maintenance of curli variants in an E. coli O157:H7 population may provide a survival strategy in which C+ variants are selected in a nutrient-limited environment, whereas C− variants are selected in an acidic environment, such as the stomach of an animal host, including that of a human.


Genome Biology | 2009

Phylogenetic classification of Escherichia coli O157:H7 strains of human and bovine origin using a novel set of nucleotide polymorphisms

Michael L. Clawson; James E. Keen; T. P. L. Smith; Lisa M. Durso; Tara G. McDaneld; Robert E. Mandrell; Margaret A. Davis; James L. Bono

BackgroundCattle are a reservoir of Shiga toxin-producing Escherichia coli O157:H7 (STEC O157), and are known to harbor subtypes not typically found in clinically ill humans. Consequently, nucleotide polymorphisms previously discovered via strains originating from human outbreaks may be restricted in their ability to distinguish STEC O157 genetic subtypes present in cattle. The objectives of this study were firstly to identify nucleotide polymorphisms in a diverse sampling of human and bovine STEC O157 strains, secondly to classify strains of either bovine or human origin by polymorphism-derived genotypes, and finally to compare the genotype diversity with pulsed-field gel electrophoresis (PFGE), a method currently used for assessing STEC O157 diversity.ResultsHigh-throughput 454 sequencing of pooled STEC O157 strain DNAs from human clinical cases (n = 91) and cattle (n = 102) identified 16,218 putative polymorphisms. From those, 178 were selected primarily within genomic regions conserved across E. coli serotypes and genotyped in 261 STEC O157 strains. Forty-two unique genotypes were observed that are tagged by a minimal set of 32 polymorphisms. Phylogenetic trees of the genotypes are divided into clades that represent strains of cattle origin, or cattle and human origin. Although PFGE diversity surpassed genotype diversity overall, ten PFGE patterns each occurred with multiple strains having different genotypes.ConclusionsDeep sequencing of pooled STEC O157 DNAs proved highly effective in polymorphism discovery. A polymorphism set has been identified that characterizes genetic diversity within STEC O157 strains of bovine origin, and a subset observed in human strains. The set may complement current techniques used to classify strains implicated in disease outbreaks.


Frontiers in Cellular and Infection Microbiology | 2012

Multilocus Sequence Typing Methods for the Emerging Campylobacter Species C. hyointestinalis, C. lanienae, C. sputorum, C. concisus, and C. curvus

William G. Miller; Mary H. Chapman; Emma Yee; Stephen L. W. On; Desmond K. McNulty; Albert J. Lastovica; Eleanor McNamara; Geraldine Duffy; Robert E. Mandrell

Multilocus sequence typing (MLST) systems have been reported previously for multiple food- and food animal-associated Campylobacter species (e.g., C. jejuni, C. coli, C. lari, and C. fetus) to both differentiate strains and identify clonal lineages. These MLST methods focused primarily on campylobacters of human clinical (e.g., C. jejuni) or veterinary (e.g., C. fetus) relevance. However, other, emerging, Campylobacter species have been isolated increasingly from environmental, food animal, or human clinical samples. We describe herein four MLST methods for five emerging Campylobacter species: C. hyointestinalis, C. lanienae, C. sputorum, C. concisus, and C. curvus. The concisus/curvus method uses the loci aspA, atpA, glnA, gltA, glyA, ilvD, and pgm, whereas the other methods use the seven loci defined for C. jejuni (i.e., aspA, atpA, glnA, gltA, glyA, pgm, and tkt). Multiple food animal and human clinical C. hyointestinalis (nu2009=u200948), C. lanienae (nu2009=u200934), and C. sputorum (nu2009=u200924) isolates were typed, along with 86 human clinical C. concisus and C. curvus isolates. A large number of sequence types were identified using all four MLST methods. Additionally, these methods speciated unequivocally isolates that had been typed ambiguously using other molecular-based speciation methods, such as 16S rDNA sequencing. Finally, the design of degenerate primer pairs for some methods permitted the typing of related species; for example, the C. hyointestinalis primer pairs could be used to type C. fetus strains. Therefore, these novel Campylobacter MLST methods will prove useful in differentiating strains of multiple, emerging Campylobacter species.


Applied and Environmental Microbiology | 2011

Sensitive detection of Shiga toxin 2 and some of its variants in environmental samples by a novel immuno-PCR assay.

Xiaohua He; Wenyuan Qi; Beatriz Quiñones; Stephanie McMahon; Michael B. Cooley; Robert E. Mandrell

ABSTRACT Shiga toxin-producing Escherichia coli (STEC) in the environment has been reported frequently. However, robust detection of STEC in environmental samples remains difficult because the numbers of bacteria in samples are often below the detection threshold of the method. We developed a novel and sensitive immuno-PCR (IPCR) assay for the detection of Shiga toxin 2 (Stx2) and Stx2 variants. The assay involves immunocapture of Stx2 at the B subunit and real-time PCR amplification of a DNA marker linked to a detection antibody recognizing the Stx2 A subunit. The qualitative detection limit of the assay is 0.1 pg/ml in phosphate-buffered saline (PBS), with a quantification range of 10 to 100,000 pg/ml. The IPCR method was 10,000-fold more sensitive than an analogue conventional enzyme-linked immunosorbent assay (ELISA) in PBS. Although the sensitivity of the IPCR for detection of Stx2 was affected by environmental sample matrices of feces, feral swine colons, soil, and water from watersheds, application of the IPCR assay to 23 enriched cultures of fecal, feral swine colon, soil, and watershed samples collected from the environment revealed that the IPCR detected Stx2 in all 15 samples that were shown to be STEC positive by real-time PCR and culture methods, demonstrating a 100% sensitivity and specificity. The modification of the sandwich IPCR we have described in this study will be a sensitive and specific screening method for evaluating the occurrence of STEC in the environment.


Applied and Environmental Microbiology | 2012

RcsB contributes to the distinct stress fitness among Escherichia coli O157:H7 curli variants of the 1993 hamburger-associated outbreak strains.

Michelle Qiu Carter; Craig T. Parker; Jacqueline W. Louie; Steven Huynh; Clifton K. Fagerquist; Robert E. Mandrell

ABSTRACT Curli are adhesive fimbriae of Enterobactericaeae and are involved in surface attachment, cell aggregation, and biofilm formation. We reported previously that curli-producing (C+) variants of E. coli O157:H7 (EcO157) were much more acid sensitive than their corresponding curli-deficient (C−) variants; however, this difference was not linked to the curli fimbriae per se. Here, we investigated the underlying molecular basis of this phenotypic divergence. We identified large deletions in the rcsB gene of C+ variants isolated from the 1993 U.S. hamburger-associated outbreak strains. rcsB encodes the response regulator of the RcsCDB two-component signal transduction system, which regulates curli biogenesis negatively but acid resistance positively. Further comparison of stress fitness revealed that C+ variants were also significantly more sensitive to heat shock but were resistant to osmotic stress and oxidative damage, similar to C− variants. Transcriptomics analysis uncovered a large number of differentially expressed genes between the curli variants, characterized by enhanced expression in C+ variants of genes related to biofilm formation, virulence, catabolic activity, and nutrient uptake but marked decreases in transcription of genes related to various types of stress resistance. Supplying C+ variants with a functional rcsB restored resistance to heat shock and acid challenge in cells but blocked curli production, confirming that inactivation of RcsB in C+ variants was the basis of fitness segregation within the EcO157 population. This study provides an example of how genome instability of EcO157 promotes intrapopulation diversification, generating subpopulations carrying an array of distinct phenotypes that may confer the pathogen with survival advantages in diverse environments.


Journal of Clinical Microbiology | 2013

Using Major Outer Membrane Protein Typing as an Epidemiological Tool To Investigate Outbreaks Caused by Milk-Borne Campylobacter jejuni Isolates in California

Michele T. Jay-Russell; Robert E. Mandrell; Jean Yuan; Anna H. Bates; Rosa Manalac; Janet C. Mohle-Boetani; Akiko C. Kimura; Janice Lidgard; William G. Miller

ABSTRACT We describe using major outer membrane protein (MOMP) typing as a screen to compare the Campylobacter jejuni porA gene sequences of clinical outbreak strains from human stool with the porA sequences of dairy farm strains isolated during two milk-borne campylobacteriosis outbreak investigations in California. The genetic relatedness of clinical and environmental strains with identical or closely related porA sequences was confirmed by multilocus sequence typing and pulsed-field gel electrophoresis analysis. The first outbreak involved 1,644 C. jejuni infections at 11 state correctional facilities and was associated with consumption of pasteurized milk supplied by an on-site dairy (dairy A) at a prison in the central valley. The second outbreak involved eight confirmed and three suspect C. jejuni cases linked to consumption of commercial raw milk and raw chocolate colostrum at another central valley dairy (dairy B). Both dairies bottled fluid milk on the farm and distributed the finished product to off-site locations. Altogether, C. jejuni was isolated from 7 of 15 (46.7%) bovine fecal, 12 of 20 (60%) flush alley water, and 1 of 20 (5%) lagoon samples collected on dairy A. At dairy B, C. jejuni was cultured from 9 of 26 (34.6%) bovine fecal samples. Environmental strains indistinguishable from the clinical outbreak strains were found in five flush alley water samples (dairy A) and four bovine fecal samples (dairy B). The findings demonstrate that MOMP typing is a useful tool to triage environmental isolates prior to conducting more labor-intensive molecular typing methods.

Collaboration


Dive into the Robert E. Mandrell's collaboration.

Top Co-Authors

Avatar

William G. Miller

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Craig T. Parker

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Michael B. Cooley

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Anna H. Bates

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Anne H. Bates

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Clifton K. Fagerquist

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Daniel R. Shelton

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jacqueline W. Louie

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jitendra Patel

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge