Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert E. Neal is active.

Publication


Featured researches published by Robert E. Neal.


Journal of Clinical Oncology | 2011

Successful Treatment of a Large Soft Tissue Sarcoma With Irreversible Electroporation

Robert E. Neal; John H. Rossmeisl; Paulo A. Garcia; Otto I. Lanz; Natalia Henao-Guerrero; Rafael V. Davalos

Introduction Irreversible electroporation (IRE) is a promising technique for the focal treatment of pathologic tissues that involves placing minimally invasive electrodes within the targeted region. A series of short, intense electric pulses are then applied to destabilize the cell membrane, presumably by creating nanopores, inducing cell death in a nonthermal manner. The unique therapeutic mechanism of IRE does not rely on tissue temperature changes, as with hyperthermic or cryoablative procedures. Therefore, IRE preserves the extracellular matrix, major tissue vasculature, and other sensitive structures. Treated regions resolve rapidly, with submillimeter resolution between treated and unaffected cells, and are predictable with numerical modeling. Treatments promote an immune response, are unaltered by blood flow, can be administered quickly (approximately 5 minutes), and can be visualized in real time. IRE has been studied extensively in healthy tissue, and tumors have been treated with IRE in mice. IRE has been attempted in humans for prostate, lung, kidney, and liver cancers. Human treatments revealed negligible postablation pain and the ability to apply the pulses in proximity to vital structures. Overall, assessment of the therapeutic efficacy of IRE remains in its infancy. We hypothesize that IRE treatments can be designed and implemented to successfully treat soft tissue malignancies, including large and complex tumors, a crucial step for translation of the technology into routine clinical use. Here we report our treatment of a focal histiocytic sarcoma of the coxofemoral joint in a canine patient. Follow-up examinations demonstrated prolonged relief of cancerassociated pain, preservation of pelvic limb function, and complete tumor regression 6 months after initial treatment.


IEEE Transactions on Biomedical Engineering | 2012

Experimental Characterization and Numerical Modeling of Tissue Electrical Conductivity during Pulsed Electric Fields for Irreversible Electroporation Treatment Planning

Robert E. Neal; Paulo A. Garcia; John L. Robertson; Rafael V. Davalos

Irreversible electroporation is a new technique to kill cells in targeted tissue, such as tumors, through a nonthermal mechanism using electric pulses to irrecoverably disrupt the cell membrane. Treatment effects relate to the tissue electric field distribution, which can be predicted with numerical modeling for therapy planning. Pulse effects will change the cell and tissue properties through thermal and electroporation (EP)-based processes. This investigation characterizes these changes by measuring the electrical conductivity and temperature of ex vivo renal porcine tissue within a single pulse and for a 200 pulse protocol. These changes are incorporated into an equivalent circuit model for cells and tissue with a variable EP-based resistance, providing a potential method to estimate conductivity as a function of electric field and pulse length for other tissues. Finally, a numerical model using a human kidney volumetric mesh evaluated how treatment predictions vary when EP- and temperature-based electrical conductivity changes are incorporated. We conclude that significant changes in predicted outcomes will occur when the experimental results are applied to the numerical model, where the direction and degree of change varies with the electric field considered.


Biomedical Engineering Online | 2011

A Parametric Study Delineating Irreversible Electroporation from Thermal Damage Based on a Minimally Invasive Intracranial Procedure

Paulo A. Garcia; John H. Rossmeisl; Robert E. Neal; Thomas L. Ellis; Rafael V. Davalos

BackgroundIrreversible electroporation (IRE) is a new minimally invasive technique to kill undesirable tissue in a non-thermal manner. In order to maximize the benefits from an IRE procedure, the pulse parameters and electrode configuration must be optimized to achieve complete coverage of the targeted tissue while preventing thermal damage due to excessive Joule heating.MethodsWe developed numerical simulations of typical protocols based on a previously published computed tomographic (CT) guided in vivo procedure. These models were adapted to assess the effects of temperature, electroporation, pulse duration, and repetition rate on the volumes of tissue undergoing IRE alone or in superposition with thermal damage.ResultsNine different combinations of voltage and pulse frequency were investigated, five of which resulted in IRE alone while four produced IRE in superposition with thermal damage.ConclusionsThe parametric study evaluated the influence of pulse frequency and applied voltage on treatment volumes, and refined a proposed method to delineate IRE from thermal damage. We confirm that determining an IRE treatment protocol requires incorporating all the physical effects of electroporation, and that these effects may have significant implications in treatment planning and outcome assessment. The goal of the manuscript is to provide the reader with the numerical methods to assess multiple-pulse electroporation treatment protocols in order to isolate IRE from thermal damage and capitalize on the benefits of a non-thermal mode of tissue ablation.


Biomedical Engineering Online | 2010

Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion

Michael B. Sano; Robert E. Neal; Paulo A. Garcia; David A. Gerber; John L. Robertson; Rafael V. Davalos

BackgroundDespite advances in transplant surgery and general medicine, the number of patients awaiting transplant organs continues to grow, while the supply of organs does not. This work outlines a method of organ decellularization using non-thermal irreversible electroporation (N-TIRE) which, in combination with reseeding, may help supplement the supply of organs for transplant.MethodsIn our study, brief but intense electric pulses were applied to porcine livers while under active low temperature cardio-emulation perfusion. Histological analysis and lesion measurements were used to determine the effects of the pulses in decellularizing the livers as a first step towards the development of extracellular scaffolds that may be used with stem cell reseeding. A dynamic conductivity numerical model was developed to simulate the treatment parameters used and determine an irreversible electroporation threshold.ResultsNinety-nine individual 1000 V/cm 100-μs square pulses with repetition rates between 0.25 and 4 Hz were found to produce a lesion within 24 hours post-treatment. The livers maintained intact bile ducts and vascular structures while demonstrating hepatocytic cord disruption and cell delamination from cord basal laminae after 24 hours of perfusion. A numerical model found an electric field threshold of 423 V/cm under specific experimental conditions, which may be used in the future to plan treatments for the decellularization of entire organs. Analysis of the pulse repetition rate shows that the largest treated area and the lowest interstitial density score was achieved for a pulse frequency of 1 Hz. After 24 hours of perfusion, a maximum density score reduction of 58.5 percent had been achieved.ConclusionsThis method is the first effort towards creating decellularized tissue scaffolds that could be used for organ transplantation using N-TIRE. In addition, it provides a versatile platform to study the effects of pulse parameters such as pulse length, repetition rate, and field strength on whole organ structures.


IEEE Transactions on Biomedical Engineering | 2015

In Vivo Irreversible Electroporation Kidney Ablation: Experimentally Correlated Numerical Models

Robert E. Neal; Paulo A. Garcia; Helen Kavnoudias; Franklin Rosenfeldt; Catriona McLean; Victoria Earl; Joanne Bergman; Rafael V. Davalos; Kenneth R. Thomson

Irreversible electroporation (IRE) ablation uses brief electric pulses to kill a volume of tissue without damaging the structures contraindicated for surgical resection or thermal ablation, including blood vessels and ureters. IRE offers a targeted nephron-sparing approach for treating kidney tumors, but the relevant organ-specific electrical properties and cellular susceptibility to IRE electric pulses remain to be characterized. Here, a pulse protocol of 100 electric pulses, each 100 μs long, is delivered at 1 pulse/s to canine kidneys at three different voltage-to-distance ratios while measuring intrapulse current, completed 6 h before humane euthanasia. Numerical models were correlated with lesions and electrical measurements to determine electrical conductivity behavior and lethal electric field threshold. Three methods for modeling tissue response to the pulses were investigated (static, linear dynamic, and asymmetrical sigmoid dynamic), where the asymmetrical sigmoid dynamic conductivity function most accurately and precisely matched lesion dimensions, with a lethal electric field threshold of 575 ± 67 V/cm for the protocols used. The linear dynamic model also attains accurate predictions with a simpler function. These findings can aid renal IRE treatment planning under varying electrode geometries and pulse strengths. Histology showed a wholly necrotic core lesion at the highest electric fields, surrounded by a transitional perimeter of differential tissue viability dependent on renal structure.


PLOS ONE | 2013

Improved Local and Systemic Anti-Tumor Efficacy for Irreversible Electroporation in Immunocompetent versus Immunodeficient Mice

Robert E. Neal; John H. Rossmeisl; John L. Robertson; Christopher B. Arena; Erica M. Davis; Ravi Singh; Jonathan Stallings; Rafael V. Davalos

Irreversible electroporation (IRE) is a non-thermal focal ablation technique that uses a series of brief but intense electric pulses delivered into a targeted region of tissue, killing the cells by irrecoverably disrupting cellular membrane integrity. This study investigates if there is an improved local anti-tumor response in immunocompetent (IC) BALB/c versus immunodeficient (ID) nude mice, including the potential for a systemic protective effect against rechallenge. Subcutaneous murine renal carcinoma tumors were treated with an IRE pulsing protocol that used 60% of the predicted voltage required to invoke complete regressions in the ID mice. Tumors were followed for 34 days following treatment for 11 treated mice from each strain, and 7 controls from each strain. Mouse survival based on tumor burden and the progression-free disease period was substantially longer in the treated IC mice relative to the treated ID mice and sham controls for both strains. Treated IC mice were rechallenged with the same cell line 18 days after treatment, where growth of the second tumors was shown to be significantly reduced or prevented entirely. There was robust CD3+ cell infiltration in some treated BALB/C mice, with immunocytes focused at the transition between viable and dead tumor. There was no difference in the low immunocyte presence for untreated tumors, nude mice, and matrigel-only injections in both strains. These findings suggest IRE therapy may have greater therapeutic efficacy in immunocompetent patients than what has been suggested by immunodeficient models, and that IRE may invoke a systemic response beyond the targeted ablation region.


Journal of Neurosurgery | 2015

Safety and feasibility of the NanoKnife system for irreversible electroporation ablative treatment of canine spontaneous intracranial gliomas

John H. Rossmeisl; Paulo A. Garcia; Theresa E. Pancotto; John L. Robertson; Natalia Henao-Guerrero; Robert E. Neal; Thomas L. Ellis; Rafael V. Davalos

OBJECT Irreversible electroporation (IRE) is a novel nonthermal ablation technique that has been used for the treatment of solid cancers. However, it has not been evaluated for use in brain tumors. Here, the authors report on the safety and feasibility of using the NanoKnife IRE system for the treatment of spontaneous intracranial gliomas in dogs. METHODS Client-owned dogs with a telencephalic glioma shown on MRI were eligible. Dog-specific treatment plans were generated by using MRI-based tissue segmentation, volumetric meshing, and finite element modeling. After biopsy confirmation of glioma, IRE treatment was delivered stereotactically with the NanoKnife system using pulse parameters and electrode configurations derived from therapeutic plans. The primary end point was an evaluation of safety over the 14 days immediately after treatment. Follow-up was continued for 12 months or until death with serial physical, neurological, laboratory, and MRI examinations. RESULTS Seven dogs with glioma were treated. The mean age of the dogs was 9.3 ± 1.6 years, and the mean pretreatment tumor volume was 1.9 ± 1.4 cm(3). The median preoperative Karnofsky Performance Scale score was 70 (range 30-75). Severe posttreatment toxicity was observed in 2 of the 7 dogs; one developed fatal (Grade 5) aspiration pneumonia, and the other developed treatment-associated cerebral edema, which resulted in transient neurological deterioration. Results of posttreatment diagnostic imaging, tumor biopsies, and neurological examinations indicated that tumor ablation was achieved without significant direct neurotoxicity in 6 of the 7 dogs. The median 14-day post-IRE Karnofsky Performance Scale score of the 6 dogs that survived to discharge was 80 (range 60-90), and this score was improved over the pretreatment value in every case. Objective tumor responses were seen in 4 (80%) of 5 dogs with quantifiable target lesions. The median survival was 119 days (range 1 to > 940 days). CONCLUSION With the incorporation of additional therapeutic planning procedures, the NanoKnife system is a novel technology capable of controlled IRE ablation of telencephalic gliomas.


The Prostate | 2015

Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy

Rafael V. Davalos; Suyashree Bhonsle; Robert E. Neal

Irreversible electroporation (IRE) describes a cellular response to electric field exposure, resulting in the formation of nanoscale defects that can lead to cell death. While this behavior occurs independently of thermally‐induced processes, therapeutic ablation of targeted tissues with IRE uses a series of brief electric pulses, whose parameters result in secondary Joule heating of the tissue. Where contemporary clinical pulse protocols use aggressive energy regimes, additional evidence is supplementing original studies that assert care must be taken in clinical ablation protocols to ensure the cumulative thermal effects do not induce damage that will alter outcomes for therapies using the IRE non‐thermal cell death process for tissue ablation. In this letter, we seek to clarify the nomenclature regarding IRE as a non‐thermal ablation technique, as well as identify existing literature that uses experimental, clinical, and numerical results to discretely address and evaluate the thermal considerations relevant when applying IRE in clinical scenarios, including several approaches for reducing these effects. Existing evidence in the literature describes cell response to electric fields, suggesting cell death from IRE is a unique process, independent from traditional thermal damage. Numerical simulations, as well as preclinical and clinical findings demonstrate the ability to deliver therapeutic IRE ablation without occurrence of morbidity associated with thermal therapies. Clinical IRE therapy generates thermal effects, which may moderate the non‐thermal aspects of IRE ablation. Appropriate protocol development, utilization, and pulse delivery devices may be implemented to restrain these effects and maintain IRE as the vastly predominant tissue death modality, reducing therapy‐mitigating thermal damage. Clinical applications of IRE should consider thermal effects and employ protocols to ensure safe and effective therapy delivery. Prostate 75:1114–1118, 2015.


PLOS ONE | 2016

The influence of a metal stent on the distribution of thermal energy during irreversible electroporation

Hester J. Scheffer; Jantien A. Vogel; Willemien van den Bos; Robert E. Neal; Krijn P. van Lienden; Marc G. Besselink; Martin J. C. van Gemert; Cees W. M. van der Geld; Martijn R. Meijerink; John H. Klaessens; Rudolf M. Verdaasdonk

Purpose Irreversible electroporation (IRE) uses short duration, high-voltage electrical pulses to induce cell death via nanoscale defects resulting from altered transmembrane potential. The technique is gaining interest for ablations in unresectable pancreatic and hepatobiliary cancer. Metal stents are often used for palliative biliary drainage in these patients, but are currently seen as an absolute contraindication for IRE due to the perceived risk of direct heating of the metal and its surroundings. This study investigates the thermal and tissue viability changes due to a metal stent during IRE. Methods IRE was performed in a homogeneous tissue model (polyacrylamide gel), without and with a metal stent placed perpendicular and parallel to the electrodes, delivering 90 and 270 pulses (15–35 A, 90 μsec, 1.5 cm active tip exposure, 1.5 cm interelectrode distance, 1000–1500 V/cm, 90 pulses/min), and in-vivo in a porcine liver (4 ablations). Temperature changes were measured with an infrared thermal camera and with fiber-optic probes. Tissue viability after in-vivo IRE was investigated macroscopically using 5-triphenyltetrazolium chloride (TTC) vitality staining. Results In the gel, direct stent-heating was not observed. Contrarily, the presence of a stent between the electrodes caused a higher increase in median temperature near the electrodes (23.2 vs 13.3°C [90 pulses]; p = 0.021, and 33.1 vs 24.8°C [270 pulses]; p = 0.242). In-vivo, no temperature difference was observed for ablations with and without a stent. Tissue examination showed white coagulation 1mm around the electrodes only. A rim of vital tissue remained around the stent, whereas ablation without stent resulted in complete tissue avitality. Conclusion IRE in the vicinity of a metal stent does not cause notable direct heating of the metal, but results in higher temperatures around the electrodes and remnant viable tissue. Future studies should determine for which clinical indications IRE in the presence of metal stents is safe and effective.


Techniques in Vascular and Interventional Radiology | 2015

Introduction to Irreversible Electroporation—Principles and Techniques

Kenneth R. Thomson; Helen Kavnoudias; Robert E. Neal

Irreversible electroporation (IRE) is a novel nonthermal focal ablation technique that uses a series of brief but intense electric pulses delivered by paired electrodes into a targeted region of tissue, killing the cells by irreversibly disrupting cellular membrane integrity. Unlike other ablation methods, IRE has relatively little effect on connective tissues and nerves and has a low patient effect. The ability of IRE to achieve cell death immediately adjacent to large vessels without effect on the vessels themselves has raised the possibility of better treatment of advanced pancreatic cancer. Because of the low effect on the patient, IRE is well suited for use in conjunction with chemotherapeutic agents. The IRE effect is not uniform and is dependent on the intrinsic conductivity of the tissue, the number of pulses delivered, the current flow achieved, and the total time for the treatment. It is currently under investigation for a wide range of solid tumors and prostate cancer in humans and in animals in the breast, brain, and spinal cord. In clinical practice, IRE can be administered either percutaneously under imaging guidance or at open operation under direct vision. In animals there is some evidence of an immune response presumably due to exposure of the intracellular target material, resulting in a greater therapeutic effect. Unlike many other cancer treatments, IRE has been introduced for human clinical use at a very early stage of development of the technique and much of the basic understanding of how and when to use IRE is still under investigation.

Collaboration


Dive into the Robert E. Neal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Nahum Goldberg

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge